Abstract:
We construct models of finite-dimensional linear and projective irreducible representations of a connected semisimple group G in linear systems on the variety G. We establish an algebro-geometric criterion for the linearizability of an irreducible projective representation of G. We explain the algebro-geometric meaning of the numerical characteristic of an arbitrary rational character of a maximal torus of G. Using these results we compute the Picard group of an arbitrary homogeneous space of any connected linear algebraic group H, prove the homogeneity of an arbitrary one-dimensional algebraic vector bundle over such a space relative to some covering group of H, and compute the Chern class of such a bundle.
Citation:
V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327
\Bibitem{Pop74}
\by V.~L.~Popov
\paper Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles
\jour Math. USSR-Izv.
\yr 1974
\vol 8
\issue 2
\pages 301--327
\mathnet{http://mi.mathnet.ru/eng/im1903}
\crossref{https://doi.org/10.1070/IM1974v008n02ABEH002107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=357399}
\zmath{https://zbmath.org/?q=an:0298.14023}
Linking options:
https://www.mathnet.ru/eng/im1903
https://doi.org/10.1070/IM1974v008n02ABEH002107
https://www.mathnet.ru/eng/im/v38/i2/p294
This publication is cited in the following 55 articles:
Ivan Arzhantsev, Yulia Zaitseva, “Affine homogeneous varieties and suspensions”, Res Math Sci, 11:2 (2024)
Nguyen Manh Linh, “Arithmetics of homogeneous spaces over p$p$‐adic function fields”, Journal of London Math Soc, 109:1 (2024)
Qi Yao, “Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties”, Can. J. Math.-J. Can. Math., 2024, 1
V. L. Popov, “Picard group of a connected affine algebraic group”, Russian Math. Surveys, 78:4 (2023), 794–796
Yihong Hao, An Wang, Liyou Zhang, “A Note on the Complete Kähler–Einstein Metrics of Disk Bundles Over Compact Homogeneous Kähler Manifolds”, J Geom Anal, 33:9 (2023)
Eder M. Correa, “Kähler-Ricci flow on rational homogeneous varieties”, Journal of Algebra, 629 (2023), 38
ROMAN AVDEEV, “ON EXTENDED WEIGHT MONOIDS OF SPHERICAL HOMOGENEOUS SPACES”, Transformation Groups, 26:2 (2021), 403
Dave Witte Morris, “Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups”, SIGMA, 16 (2020), 012, 17 pp.
Kiumars Kaveh, Askold G. Khovanskii, “Intersections of Hypersurfaces and Ring of Conditions of a Spherical Homogeneous Space”, SIGMA, 16 (2020), 016, 12 pp.
Avdeev R. Petukhov A., “Branching Rules Related to Spherical Actions on Flag Varieties”, Algebr. Represent. Theory, 23:3 (2020), 541–581
Shulim Kaliman, Frank Kutzschebauch, Tuyen Trung Truong, “On subelliptic manifolds”, Isr. J. Math., 228:1 (2018), 229
C. Procesi, “The geometry of polynomial identities”, Izv. Math., 80:5 (2016), 910–953
Roman Avdeev, “Strongly solvable spherical subgroups and their combinatorial invariants”, Sel. Math. New Ser, 2015
Luc Pirio, “Tissus algébriques exceptionnels”, Math. Ann, 2015
Mikhail Borovoi, Tomer M. Schlank, “A cohomological obstruction to weak approximation for homogeneous spaces”, Mosc. Math. J., 12:1 (2012), 1–20
Bong H. Lian, Shing-Tung Yau, “Period integrals of CY and general type complete intersections”, Invent. math, 2012
Ivan Arzhantsev, M. G. Zaidenberg, K. G. Kuyumzhiyan, “Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity”, Sb. Math., 203:7 (2012), 923–949
Mitsuyasu Hashimoto, “Good filtrations and strong F-regularity of the ring of -invariants”, Journal of Algebra, 370 (2012), 198
R. S. Avdeev, N. E. Gorfinkel, “Harmonic Analysis on Spherical Homogeneous Spaces with Solvable Stabilizer”, Funct. Anal. Appl., 46:3 (2012), 161–172
Mikhail Borovoi, Joost van Hamel, “Extended equivariant Picard complexes and homogeneous spaces”, Transformation Groups, 17:1 (2012), 51