Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1974, Volume 8, Issue 2, Pages 301–327
DOI: https://doi.org/10.1070/IM1974v008n02ABEH002107
(Mi im1903)
 

This article is cited in 55 scientific papers (total in 55 papers)

Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles

V. L. Popov
References:
Abstract: We construct models of finite-dimensional linear and projective irreducible representations of a connected semisimple group G in linear systems on the variety G. We establish an algebro-geometric criterion for the linearizability of an irreducible projective representation of G. We explain the algebro-geometric meaning of the numerical characteristic of an arbitrary rational character of a maximal torus of G. Using these results we compute the Picard group of an arbitrary homogeneous space of any connected linear algebraic group H, prove the homogeneity of an arbitrary one-dimensional algebraic vector bundle over such a space relative to some covering group of H, and compute the Chern class of such a bundle.
Received: 18.04.1973
Bibliographic databases:
Document Type: Article
UDC: 519.4
MSC: Primary 14C20, 14M15, 20G05; Secondary 14F05, 32M10
Language: English
Original paper language: Russian
Citation: V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327
Citation in format AMSBIB
\Bibitem{Pop74}
\by V.~L.~Popov
\paper Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles
\jour Math. USSR-Izv.
\yr 1974
\vol 8
\issue 2
\pages 301--327
\mathnet{http://mi.mathnet.ru/eng/im1903}
\crossref{https://doi.org/10.1070/IM1974v008n02ABEH002107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=357399}
\zmath{https://zbmath.org/?q=an:0298.14023}
Linking options:
  • https://www.mathnet.ru/eng/im1903
  • https://doi.org/10.1070/IM1974v008n02ABEH002107
  • https://www.mathnet.ru/eng/im/v38/i2/p294
  • This publication is cited in the following 55 articles:
    1. Ivan Arzhantsev, Yulia Zaitseva, “Affine homogeneous varieties and suspensions”, Res Math Sci, 11:2 (2024)  crossref
    2. Nguyen Manh Linh, “Arithmetics of homogeneous spaces over p$p$‐adic function fields”, Journal of London Math Soc, 109:1 (2024)  crossref
    3. Qi Yao, “Invariant scalar-flat Kähler metrics on line bundles over generalized flag varieties”, Can. J. Math.-J. Can. Math., 2024, 1  crossref
    4. V. L. Popov, “Picard group of a connected affine algebraic group”, Russian Math. Surveys, 78:4 (2023), 794–796  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Yihong Hao, An Wang, Liyou Zhang, “A Note on the Complete Kähler–Einstein Metrics of Disk Bundles Over Compact Homogeneous Kähler Manifolds”, J Geom Anal, 33:9 (2023)  crossref
    6. Eder M. Correa, “Kähler-Ricci flow on rational homogeneous varieties”, Journal of Algebra, 629 (2023), 38  crossref
    7. ROMAN AVDEEV, “ON EXTENDED WEIGHT MONOIDS OF SPHERICAL HOMOGENEOUS SPACES”, Transformation Groups, 26:2 (2021), 403  crossref
    8. Dave Witte Morris, “Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups”, SIGMA, 16 (2020), 012, 17 pp.  mathnet  crossref
    9. Kiumars Kaveh, Askold G. Khovanskii, “Intersections of Hypersurfaces and Ring of Conditions of a Spherical Homogeneous Space”, SIGMA, 16 (2020), 016, 12 pp.  mathnet  crossref
    10. Avdeev R. Petukhov A., “Branching Rules Related to Spherical Actions on Flag Varieties”, Algebr. Represent. Theory, 23:3 (2020), 541–581  crossref  isi
    11. Shulim Kaliman, Frank Kutzschebauch, Tuyen Trung Truong, “On subelliptic manifolds”, Isr. J. Math., 228:1 (2018), 229  crossref
    12. C. Procesi, “The geometry of polynomial identities”, Izv. Math., 80:5 (2016), 910–953  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Roman Avdeev, “Strongly solvable spherical subgroups and their combinatorial invariants”, Sel. Math. New Ser, 2015  crossref
    14. Luc Pirio, “Tissus algébriques exceptionnels”, Math. Ann, 2015  crossref
    15. Mikhail Borovoi, Tomer M. Schlank, “A cohomological obstruction to weak approximation for homogeneous spaces”, Mosc. Math. J., 12:1 (2012), 1–20  mathnet  crossref  mathscinet
    16. Bong H. Lian, Shing-Tung Yau, “Period integrals of CY and general type complete intersections”, Invent. math, 2012  crossref
    17. Ivan Arzhantsev, M. G. Zaidenberg, K. G. Kuyumzhiyan, “Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity”, Sb. Math., 203:7 (2012), 923–949  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Mitsuyasu Hashimoto, “Good filtrations and strong F-regularity of the ring of -invariants”, Journal of Algebra, 370 (2012), 198  crossref
    19. R. S. Avdeev, N. E. Gorfinkel, “Harmonic Analysis on Spherical Homogeneous Spaces with Solvable Stabilizer”, Funct. Anal. Appl., 46:3 (2012), 161–172  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    20. Mikhail Borovoi, Joost van Hamel, “Extended equivariant Picard complexes and homogeneous spaces”, Transformation Groups, 17:1 (2012), 51  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1054
    Russian version PDF:350
    English version PDF:64
    References:82
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025