Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2020, Volume 54, Issue 1, Pages 87–92
DOI: https://doi.org/10.4213/faa3694
(Mi faa3694)
 

This article is cited in 6 scientific papers (total in 6 papers)

Brief communications

On homogenization for locally periodic elliptic and parabolic operators

N. N. Senik

Saint Petersburg State University
Full-text PDF (453 kB) Citations (6)
References:
Funding agency Grant number
Russian Science Foundation 17-11-01069
Received: 13.05.2019
Revised: 13.06.2019
Accepted: 15.06.2019
English version:
Functional Analysis and Its Applications, 2020, Volume 54, Issue 1, Pages 68–72
DOI: https://doi.org/10.1134/S0016266320010104
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funktsional. Anal. i Prilozhen., 54:1 (2020), 87–92; Funct. Anal. Appl., 54:1 (2020), 68–72
Citation in format AMSBIB
\Bibitem{Sen20}
\by N.~N.~Senik
\paper On homogenization for locally periodic elliptic and parabolic operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2020
\vol 54
\issue 1
\pages 87--92
\mathnet{http://mi.mathnet.ru/faa3694}
\crossref{https://doi.org/10.4213/faa3694}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3684103}
\elib{https://elibrary.ru/item.asp?id=45387568}
\transl
\jour Funct. Anal. Appl.
\yr 2020
\vol 54
\issue 1
\pages 68--72
\crossref{https://doi.org/10.1134/S0016266320010104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000565762000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090090052}
Linking options:
  • https://www.mathnet.ru/eng/faa3694
  • https://doi.org/10.4213/faa3694
  • https://www.mathnet.ru/eng/faa/v54/i1/p87
  • This publication is cited in the following 6 articles:
    1. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. N. N. Senik, “On homogenization for piecewise locally periodic operators”, Russ. J. Math. Phys., 30:2 (2023), 270  crossref  mathscinet
    3. N. N. Senik, “Homogenization for locally periodic elliptic problems on a domain”, SIAM J. Math. Anal., 55:2 (2023), 849  crossref  mathscinet
    4. A. Piatnitski, V. Sloushch, T. Suslina, E. Zhizhina, “On operator estimates in homogenization of nonlocal operators of convolution type”, Journal of Differential Equations, 352 (2023), 153  crossref  mathscinet
    5. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    6. N. N. Senik, “Homogenization for locally periodic elliptic operators”, J. Math. Anal. Appl., 505:2 (2022), 125581  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :50
    References:45
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025