Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2017, Volume 51, Issue 3, Pages 87–93
DOI: https://doi.org/10.4213/faa3492
(Mi faa3492)
 

This article is cited in 5 scientific papers (total in 5 papers)

Brief communications

Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients

Yu. M. Meshkovaa, T. A. Suslinab

a Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
b Department of Physics, St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (187 kB) Citations (5)
References:
Abstract: Let ORd be a bounded domain of class C1,1. Let 0<ε1. In L2(O;Cn) we consider a positive definite strongly elliptic second-order operator BD,ε with Dirichlet boundary condition. Its coefficients are periodic and depend on xε. The principal part of the operator is given in factorized form, and the operator has lower order terms. We study the behavior of the generalized resolvent (BD,εζQ0(/ε))1 as ε0. Here the matrix-valued function Q0 is periodic, bounded, and positive definite; ζ is a complex-valued parameter. We find approximations of the generalized resolvent in the L2(O;Cn)-operator norm and in the norm of operators acting from L2(O;Cn) to the Sobolev space H1(O;Cn) with two-parameter error estimates (depending on ε and ζ). Approximations of the generalized resolvent are applied to the homogenization of the solution of the first initial-boundary value problem for the parabolic equation Q0(x/ε)tvε(x,t)=(BD,εvε)(x,t).
Keywords: periodic differential operators, elliptic systems, parabolic systems, homogenization, operator error estimates.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00087
«Родные города» ПАО «Газпром нефть»
фонд Дмитрия Зимина «Династия»
Rokhlin Scholarship
Supported by RFBR (project no. 16-01-00087). The first author is supported by “Native Towns,” a social investment program of PJSC “Gazprom Neft,” by the “Dynasty” foundation, and by the Rokhlin grant.
Received: 25.05.2017
Accepted: 26.05.2017
English version:
Functional Analysis and Its Applications, 2017, Volume 51, Issue 3, Pages 230–235
DOI: https://doi.org/10.1007/s10688-017-0187-y
Bibliographic databases:
Document Type: Article
UDC: 517.956.2+517.956.4
Language: Russian
Citation: Yu. M. Meshkova, T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funktsional. Anal. i Prilozhen., 51:3 (2017), 87–93; Funct. Anal. Appl., 51:3 (2017), 230–235
Citation in format AMSBIB
\Bibitem{MesSus17}
\by Yu.~M.~Meshkova, T.~A.~Suslina
\paper Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients
\jour Funktsional. Anal. i Prilozhen.
\yr 2017
\vol 51
\issue 3
\pages 87--93
\mathnet{http://mi.mathnet.ru/faa3492}
\crossref{https://doi.org/10.4213/faa3492}
\elib{https://elibrary.ru/item.asp?id=29106594}
\transl
\jour Funct. Anal. Appl.
\yr 2017
\vol 51
\issue 3
\pages 230--235
\crossref{https://doi.org/10.1007/s10688-017-0187-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411338100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029762772}
Linking options:
  • https://www.mathnet.ru/eng/faa3492
  • https://doi.org/10.4213/faa3492
  • https://www.mathnet.ru/eng/faa/v51/i3/p87
  • This publication is cited in the following 5 articles:
    1. T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Yu. M. Meshkova, “On homogenization of the first initial-boundary value problem for periodic hyperbolic systems”, Appl. Anal., 99:9 (2020), 1528–1563  crossref  mathscinet  zmath  isi
    5. Yu. M. Meshkova, T. A. Suslina, “Homogenization of the first initial boundary value problem for parabolic systems: Operator error estimates”, St. Petersburg Math. J., 29:6 (2018), 935–978  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:619
    Full-text PDF :73
    References:67
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025