Abstract:
In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on Rd of the form Aε=−divA(x,x/ε)∇. The function A is assumed to be Hölder continuous with exponent s∈[0,1] in the “slow” variable and bounded in the “fast” variable. We construct approximations for (Aε−μ)−1, including one with a corrector, and for (−Δ)s/2(Aε−μ)−1 in the operator norm on L2(Rd)n. For s≠0, we also give estimates of the rates of approximation.
This publication is cited in the following 18 articles:
S. E. Pastukhova, “L2-Estimates of Error in Homogenization of Parabolic Equations with Correctors Taken Into Account”, J Math Sci, 2024
S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
N. N. Senik, “On Homogenization for piecewise locally periodic operators”, Russ. J. Math. Phys., 30:2 (2023), 270
Nikita N. Senik, “Homogenization for Locally Periodic Elliptic Problems on a Domain”, SIAM J. Math. Anal., 55:2 (2023), 849
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
N. N. Senik, “Homogenization for locally periodic elliptic operators”, J. Math. Anal. Appl., 505:2 (2022), 125581
S. E. Pastukhova, “Resolvent approximations in L2-norm for elliptic operators acting in a perforated space”, J. Math. Sci., 265:6 (2022), 1008-1026
M. M. Sirazhudinov, S. P. Dzhamaludinova, “Estimates for the locally periodic homogenization of the Riemann–Hilbert problem for a generalized Beltrami equation”, Diff. Equat., 58:6 (2022), 771–790
S. E. Pastukhova, “Improved L2-approximation of resolvents in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634
S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134
Yu. M. Meshkova, “On operator error estimates for homogenization of hyperbolic systems with periodic coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660
M. M. Sirazhudinov, L. M. Dzhabrailova, “Operatornye otsenki usredneniya zadachi Rimana-Gilberta dlya uravneniya Beltrami s lokalno-periodicheskim koeffitsientom”, Dagestanskie elektronnye matematicheskie izvestiya, 2021, no. 16, 51–61
N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72
S. E. Pastukhova, “L2-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 314–334
S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5, SI (2020), 818–838
S. E. Pastukhova, “Homogenization Estimates for Singularly Perturbed Operators”, J Math Sci, 251:5 (2020), 724
Senik N.N., “Homogenization For Non-Self-Adjoint Periodic Elliptic Operators on An Infinite Cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898