Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2017, Volume 51, Issue 2, Pages 92–96
DOI: https://doi.org/10.4213/faa3457
(Mi faa3457)
 

This article is cited in 18 scientific papers (total in 18 papers)

Brief communications

On homogenization for non-self-adjoint locally periodic elliptic operators

N. N. Senik

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on Rd of the form Aε=divA(x,x/ε). The function A is assumed to be Hölder continuous with exponent s[0,1] in the “slow” variable and bounded in the “fast” variable. We construct approximations for (Aεμ)1, including one with a corrector, and for (Δ)s/2(Aεμ)1 in the operator norm on L2(Rd)n. For s0, we also give estimates of the rates of approximation.
Keywords: homogenization, operator error estimates, locally periodic operators, effective operator, corrector.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00087
Contest «Young Russian Mathematics»
Research supported by Young Russian Mathematics award and RFBR grant 16-01-00087.
Received: 23.01.2017
English version:
Functional Analysis and Its Applications, 2017, Volume 51, Issue 2, Pages 152–156
DOI: https://doi.org/10.1007/s10688-017-0178-z
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: N. N. Senik, “On homogenization for non-self-adjoint locally periodic elliptic operators”, Funktsional. Anal. i Prilozhen., 51:2 (2017), 92–96; Funct. Anal. Appl., 51:2 (2017), 152–156
Citation in format AMSBIB
\Bibitem{Sen17}
\by N.~N.~Senik
\paper On homogenization for non-self-adjoint locally periodic elliptic operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2017
\vol 51
\issue 2
\pages 92--96
\mathnet{http://mi.mathnet.ru/faa3457}
\crossref{https://doi.org/10.4213/faa3457}
\elib{https://elibrary.ru/item.asp?id=29106595}
\transl
\jour Funct. Anal. Appl.
\yr 2017
\vol 51
\issue 2
\pages 152--156
\crossref{https://doi.org/10.1007/s10688-017-0178-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403405500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020768048}
Linking options:
  • https://www.mathnet.ru/eng/faa3457
  • https://doi.org/10.4213/faa3457
  • https://www.mathnet.ru/eng/faa/v51/i2/p92
  • This publication is cited in the following 18 articles:
    1. S. E. Pastukhova, “L2-Estimates of Error in Homogenization of Parabolic Equations with Correctors Taken Into Account”, J Math Sci, 2024  crossref
    2. S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151  mathnet  crossref
    3. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. N. N. Senik, “On Homogenization for piecewise locally periodic operators”, Russ. J. Math. Phys., 30:2 (2023), 270  crossref  mathscinet
    5. Nikita N. Senik, “Homogenization for Locally Periodic Elliptic Problems on a Domain”, SIAM J. Math. Anal., 55:2 (2023), 849  crossref  mathscinet
    6. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    7. N. N. Senik, “Homogenization for locally periodic elliptic operators”, J. Math. Anal. Appl., 505:2 (2022), 125581  crossref  mathscinet  zmath  isi
    8. S. E. Pastukhova, “Resolvent approximations in L2-norm for elliptic operators acting in a perforated space”, J. Math. Sci., 265:6 (2022), 1008-1026  crossref  mathscinet
    9. M. M. Sirazhudinov, S. P. Dzhamaludinova, “Estimates for the locally periodic homogenization of the Riemann–Hilbert problem for a generalized Beltrami equation”, Diff. Equat., 58:6 (2022), 771–790  crossref  mathscinet
    10. S. E. Pastukhova, “Improved L2-approximation of resolvents in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634  mathnet  crossref  mathscinet
    11. S. E. Pastukhova, “Approximation of resolvents in homogenization of fourth-order elliptic operators”, Sb. Math., 212:1 (2021), 111–134  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Yu. M. Meshkova, “On operator error estimates for homogenization of hyperbolic systems with periodic coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660  crossref  mathscinet  zmath  isi
    13. M. M. Sirazhudinov, L. M. Dzhabrailova, “Operatornye otsenki usredneniya zadachi Rimana-Gilberta dlya uravneniya Beltrami s lokalno-periodicheskim koeffitsientom”, Dagestanskie elektronnye matematicheskie izvestiya, 2021, no. 16, 51–61  mathnet  crossref
    14. N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72  mathnet  crossref  crossref  mathscinet  isi  elib
    15. S. E. Pastukhova, “L2-approksimatsii rezolventy ellipticheskogo operatora v perforirovannom prostranstve”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 314–334  mathnet  crossref
    16. S. E. Pastukhova, “On resolvent approximations of elliptic differential operators with locally periodic coefficients”, Lobachevskii J. Math., 41:5, SI (2020), 818–838  crossref  mathscinet  zmath  isi
    17. S. E. Pastukhova, “Homogenization Estimates for Singularly Perturbed Operators”, J Math Sci, 251:5 (2020), 724  crossref  mathscinet
    18. Senik N.N., “Homogenization For Non-Self-Adjoint Periodic Elliptic Operators on An Infinite Cylinder”, SIAM J. Math. Anal., 49:2 (2017), 874–898  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :69
    References:68
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025