Abstract:
We study the asymptotic behavior as δ→0 of the Sobolev norm ‖u‖m of the solution to the Cauchy problem for the one-dimensional quasilinear Burgers type equation ut+f(u)x=δuxx (It is assumed that the problem is C∞, the boundary conditions are periodic, and f″⩾.) We show that the locally time-averaged Sobolev norms satisfy the estimate c_m\delta^{-m+1/2}<\langle\|u\|_m^2\rangle^{1/2}<C_m\delta^{-m+1/2} (m\ge1). The estimates obtained as a consequence for the Fourier coefficients justify Kolmogorov's spectral theory of turbulence for the case of the Burgers equation.
Citation:
A. E. Biryuk, “Spectral Properties of Solutions of the Burgers Equation with Small Dissipation”, Funktsional. Anal. i Prilozhen., 35:1 (2001), 1–15; Funct. Anal. Appl., 35:1 (2001), 1–12
\Bibitem{Bir01}
\by A.~E.~Biryuk
\paper Spectral Properties of Solutions of the Burgers Equation with Small Dissipation
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 1
\pages 1--15
\mathnet{http://mi.mathnet.ru/faa227}
\crossref{https://doi.org/10.4213/faa227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1840744}
\zmath{https://zbmath.org/?q=an:1032.35154}
\elib{https://elibrary.ru/item.asp?id=14210337}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1023/A:1004143415090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170157300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035639812}
Linking options:
https://www.mathnet.ru/eng/faa227
https://doi.org/10.4213/faa227
https://www.mathnet.ru/eng/faa/v35/i1/p1
This publication is cited in the following 22 articles:
Russian Math. Surveys, 78:4 (2023), 635–777
Dallas Albritton, Nicola De Nitti, “Sharp bounds on enstrophy growth for viscous scalar conservation laws”, Nonlinearity, 36:12 (2023), 7142
Kuksin S., “Kolmogorov'S Theory of Turbulence and Its Rigorous 1D Model”, Ann. Math. Que., 46:1 (2022), 181–193
Gumus S., Kalantarov V., “Finite-Parameter Feedback Stabilization of Original Burgers' Equations and Burgers' Equation With Nonlocal Nonlinearities”, Math. Meth. Appl. Sci., 45:1 (2022), 532–545
Bartosz Protas, “Systematic search for extreme and singular behaviour in some fundamental models of fluid mechanics”, Phil. Trans. R. Soc. A., 380:2225 (2022)
Di Kang, Bartosz Protas, “Searching for Singularities in Navier–Stokes Flows Based on the Ladyzhenskaya–Prodi–Serrin Conditions”, J Nonlinear Sci, 32:6 (2022)
Biler P., Boritchev A., Karch G., Laurencot Ph., “Concentration Phenomena in a Diffusive Aggregation Model”, J. Differ. Equ., 271 (2021), 1092–1108
Biler P., Boritchev A., Karch G., Laurencot Ph., “Sharp Sobolev Estimates For Concentration of Solutions to An Aggregation-Diffusion Equation”, J. Dyn. Differ. Equ., 2021
Kang D., Yun D., Protas B., “Maximum Amplification of Enstrophy in Three-Dimensional Navier-Stokes Flows”, J. Fluid Mech., 893 (2020), A22
Boritchev A., “Decaying Turbulence For the Fractional Subcritical Burgers Equation”, Discret. Contin. Dyn. Syst., 38:5 (2018), 2229–2249
Kelai T., Kuksin S., “Introduction To the Stochastic Burgers Equation and the Burgulence”, Bull. Sci. Math., 140:2 (2016), 140–187
A. A. Boritchev, “Turbulence for the generalised Burgers equation”, Russian Math. Surveys, 69:6 (2014), 957–994
Boritchev A., “Decaying Turbulence in the Generalised Burgers Equation”, Arch. Ration. Mech. Anal., 214:1 (2014), 331–357
Alexandre Boritchev, “Turbulence de Burgers en 1D : un cas modèle pour la théorie de Kolmogorov”, Séminaire Laurent Schwartz — EDP et applications, 2014, 1
Boritchev A., “Sharp Estimates for Turbulence in White-Forced Generalised Burgers Equation”, Geom. Funct. Anal., 23:6 (2013), 1730–1771
Boritchev A., “Estimates for Solutions of a Low-Viscosity Kick-Forced Generalized Burgers Equation”, Proc. R. Soc. Edinb. Sect. A-Math., 143:2 (2013), 253–268
V. V. Biryuk, D. A. Uglanov, A. A. Gorshkalev, D. V. Bolshov, A. S. Krasnorutskiy, V. A. Lapshina, P. A. Chertykovtsev, “Method of calculation and analysis of gas flow aerodynamic indices in a vortex wind power plant”, VESTNIK of Samara University. Aerospace and Mechanical Engineering, 12:3-1 (2013), 40
Efendiev M., Yamamoto Y., Yagi A., “Exponential attractors for non-autonomous dissipative system”, J Math Soc Japan, 63:2 (2011), 647–673
A. Miranville, S. Zelik, Handbook of Differential Equations: Evolutionary Equations, 4, 2008, 103