Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2001, Volume 35, Issue 1, Pages 1–15
DOI: https://doi.org/10.4213/faa227
(Mi faa227)
 

This article is cited in 22 scientific papers (total in 22 papers)

Spectral Properties of Solutions of the Burgers Equation with Small Dissipation

A. E. Biryukab

a M. V. Lomonosov Moscow State University
b Heriot Watt University
References:
Abstract: We study the asymptotic behavior as δ0 of the Sobolev norm um of the solution to the Cauchy problem for the one-dimensional quasilinear Burgers type equation ut+f(u)x=δuxx (It is assumed that the problem is C, the boundary conditions are periodic, and f.) We show that the locally time-averaged Sobolev norms satisfy the estimate c_m\delta^{-m+1/2}<\langle\|u\|_m^2\rangle^{1/2}<C_m\delta^{-m+1/2} (m\ge1). The estimates obtained as a consequence for the Fourier coefficients justify Kolmogorov's spectral theory of turbulence for the case of the Burgers equation.
Received: 15.09.1999
English version:
Functional Analysis and Its Applications, 2001, Volume 35, Issue 1, Pages 1–12
DOI: https://doi.org/10.1023/A:1004143415090
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. E. Biryuk, “Spectral Properties of Solutions of the Burgers Equation with Small Dissipation”, Funktsional. Anal. i Prilozhen., 35:1 (2001), 1–15; Funct. Anal. Appl., 35:1 (2001), 1–12
Citation in format AMSBIB
\Bibitem{Bir01}
\by A.~E.~Biryuk
\paper Spectral Properties of Solutions of the Burgers Equation with Small Dissipation
\jour Funktsional. Anal. i Prilozhen.
\yr 2001
\vol 35
\issue 1
\pages 1--15
\mathnet{http://mi.mathnet.ru/faa227}
\crossref{https://doi.org/10.4213/faa227}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1840744}
\zmath{https://zbmath.org/?q=an:1032.35154}
\elib{https://elibrary.ru/item.asp?id=14210337}
\transl
\jour Funct. Anal. Appl.
\yr 2001
\vol 35
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1023/A:1004143415090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000170157300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035639812}
Linking options:
  • https://www.mathnet.ru/eng/faa227
  • https://doi.org/10.4213/faa227
  • https://www.mathnet.ru/eng/faa/v35/i1/p1
  • This publication is cited in the following 22 articles:
    1. Russian Math. Surveys, 78:4 (2023), 635–777  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Dallas Albritton, Nicola De Nitti, “Sharp bounds on enstrophy growth for viscous scalar conservation laws”, Nonlinearity, 36:12 (2023), 7142  crossref
    3. Kuksin S., “Kolmogorov'S Theory of Turbulence and Its Rigorous 1D Model”, Ann. Math. Que., 46:1 (2022), 181–193  crossref  mathscinet  isi
    4. Gumus S., Kalantarov V., “Finite-Parameter Feedback Stabilization of Original Burgers' Equations and Burgers' Equation With Nonlocal Nonlinearities”, Math. Meth. Appl. Sci., 45:1 (2022), 532–545  crossref  mathscinet  isi  scopus
    5. Bartosz Protas, “Systematic search for extreme and singular behaviour in some fundamental models of fluid mechanics”, Phil. Trans. R. Soc. A., 380:2225 (2022)  crossref
    6. Di Kang, Bartosz Protas, “Searching for Singularities in Navier–Stokes Flows Based on the Ladyzhenskaya–Prodi–Serrin Conditions”, J Nonlinear Sci, 32:6 (2022)  crossref
    7. Biler P., Boritchev A., Karch G., Laurencot Ph., “Concentration Phenomena in a Diffusive Aggregation Model”, J. Differ. Equ., 271 (2021), 1092–1108  crossref  mathscinet  isi  scopus
    8. Biler P., Boritchev A., Karch G., Laurencot Ph., “Sharp Sobolev Estimates For Concentration of Solutions to An Aggregation-Diffusion Equation”, J. Dyn. Differ. Equ., 2021  crossref  isi
    9. Kang D., Yun D., Protas B., “Maximum Amplification of Enstrophy in Three-Dimensional Navier-Stokes Flows”, J. Fluid Mech., 893 (2020), A22  crossref  mathscinet  isi
    10. Boritchev A., “Decaying Turbulence For the Fractional Subcritical Burgers Equation”, Discret. Contin. Dyn. Syst., 38:5 (2018), 2229–2249  crossref  mathscinet  zmath  isi  scopus
    11. Kelai T., Kuksin S., “Introduction To the Stochastic Burgers Equation and the Burgulence”, Bull. Sci. Math., 140:2 (2016), 140–187  crossref  mathscinet  zmath  isi  scopus
    12. Boritchev A., “Multidimensional Potential Burgers Turbulence”, Commun. Math. Phys., 342:2 (2016), 441–489  crossref  mathscinet  zmath  isi  scopus
    13. A. A. Boritchev, “Turbulence for the generalised Burgers equation”, Russian Math. Surveys, 69:6 (2014), 957–994  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Boritchev A., “Decaying Turbulence in the Generalised Burgers Equation”, Arch. Ration. Mech. Anal., 214:1 (2014), 331–357  crossref  mathscinet  zmath  isi  scopus
    15. Alexandre Boritchev, “Turbulence de Burgers en 1D : un cas modèle pour la théorie de Kolmogorov”, Séminaire Laurent Schwartz — EDP et applications, 2014, 1  crossref
    16. Boritchev A., “Sharp Estimates for Turbulence in White-Forced Generalised Burgers Equation”, Geom. Funct. Anal., 23:6 (2013), 1730–1771  crossref  mathscinet  zmath  isi  scopus
    17. Boritchev A., “Estimates for Solutions of a Low-Viscosity Kick-Forced Generalized Burgers Equation”, Proc. R. Soc. Edinb. Sect. A-Math., 143:2 (2013), 253–268  crossref  mathscinet  zmath  isi  scopus
    18. V. V. Biryuk, D. A. Uglanov, A. A. Gorshkalev, D. V. Bolshov, A. S. Krasnorutskiy, V. A. Lapshina, P. A. Chertykovtsev, “Method of calculation and analysis of gas flow aerodynamic indices in a vortex wind power plant”, VESTNIK of Samara University. Aerospace and Mechanical Engineering, 12:3-1 (2013), 40  crossref
    19. Efendiev M., Yamamoto Y., Yagi A., “Exponential attractors for non-autonomous dissipative system”, J Math Soc Japan, 63:2 (2011), 647–673  crossref  mathscinet  zmath  isi  elib  scopus
    20. A. Miranville, S. Zelik, Handbook of Differential Equations: Evolutionary Equations, 4, 2008, 103  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:665
    Full-text PDF :309
    References:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025