Citation:
E. D. Gluskin, “Diameter of the Minkowski compactum is approximately equal to n”, Funktsional. Anal. i Prilozhen., 15:1 (1981), 72–73; Funct. Anal. Appl., 15:1 (1981), 57–58
\Bibitem{Glu81}
\by E.~D.~Gluskin
\paper Diameter of the Minkowski compactum is approximately equal to $n$
\jour Funktsional. Anal. i Prilozhen.
\yr 1981
\vol 15
\issue 1
\pages 72--73
\mathnet{http://mi.mathnet.ru/faa1696}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=609798}
\zmath{https://zbmath.org/?q=an:0469.46017}
\transl
\jour Funct. Anal. Appl.
\yr 1981
\vol 15
\issue 1
\pages 57--58
\crossref{https://doi.org/10.1007/BF01082381}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MK89700009}
Linking options:
https://www.mathnet.ru/eng/faa1696
https://www.mathnet.ru/eng/faa/v15/i1/p72
This publication is cited in the following 58 articles:
Tomasz Kobos, Marin Varivoda, “On the Banach–Mazur Distance in Small Dimensions”, Discrete Comput Geom, 2024
S. V. Astashkin, “Sequences of independent functions and structure of rearrangement invariant spaces”, Russian Math. Surveys, 79:3 (2024), 375–457
Tomasz Kobos, “A Uniform Lower Bound on the Norms of Hyperplane Projections of Spherical Polytopes”, Discrete Comput Geom, 70:1 (2023), 279
Bogdan Grechuk, Landscape of 21st Century Mathematics, 2021, 103
Ben Li, Carsten Schütt, Elisabeth M. Werner, “The Löwner Function of a Log-Concave Function”, J Geom Anal, 31:1 (2021), 423
A. I. Khrabrov, “Volume ratio for the Cartesian product of convex bodies”, St. Petersburg Math. J., 32:5 (2021), 905–916
O. Guédon, A. E. Litvak, K. Tatarko, “Random polytopes obtained by matrices with heavy-tailed entries”, Commun. Contemp. Math., 22:04 (2020), 1950027
Guillaume Aubrun, Ludovico Lami, Carlos Palazuelos, Stanisław J. Szarek, Andreas Winter, “Universal Gaps for XOR Games from Estimates on Tensor Norm Ratios”, Commun. Math. Phys., 375:1 (2020), 679
Tomasz Kobos, “EXTREMAL BANACH–MAZUR DISTANCE BETWEEN A SYMMETRIC CONVEX BODY AND AN ARBITRARY CONVEX BODY ON THE PLANE”, Mathematika, 66:1 (2020), 161
Joscha Prochno, Christoph Thäle, Nicola Turchi, “The isotropic constant of random polytopes with vertices on convex surfaces”, Journal of Complexity, 54 (2019), 101394
Konstantin Tikhomirov, “On the Banach–Mazur distance to cross-polytope”, Advances in Mathematics, 345 (2019), 598
Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, Erik Waingarten, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018, 787
Julian Grote, Christoph Thäle, “Gaussian polytopes: A cumulant-based approach”, Journal of Complexity, 47 (2018), 1
David Alonso-Gutiérrez, Joscha Prochno, “On the geometry of random convex sets between polytopes and zonotopes”, Journal of Mathematical Analysis and Applications, 450:1 (2017), 670
Gilles Pisier, “ON THE METRIC ENTROPY OF THE BANACH–MAZUR COMPACTUM”, Mathematika, 61:1 (2015), 179
Alexander E. Litvak, Mark Rudelson, Nicole Tomczak-Jaegermann, “On approximation by projections of polytopes with few facets”, Isr. J. Math., 203:1 (2014), 141
Pierre Youssef, “RESTRICTED INVERTIBILITY AND THE BANACH–MAZUR DISTANCE TO THE CUBE”, Mathematika, 60:1 (2014), 201
Alexander Brudnyi, “Banach spaces of polynomials as “large” subspaces of ℓ∞-spaces”, Journal of Functional Analysis, 267:4 (2014), 1285
Marek Lassak, “Banach–Mazur Distance Between Convex Quadrangles”, Demonstratio Mathematica, 47:4 (2014)