Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1981, Volume 15, Issue 1, Pages 72–73 (Mi faa1696)  

This article is cited in 58 scientific papers (total in 58 papers)

Brief communications

Diameter of the Minkowski compactum is approximately equal to n

E. D. Gluskin
References:
Received: 07.07.1980
English version:
Functional Analysis and Its Applications, 1981, Volume 15, Issue 1, Pages 57–58
DOI: https://doi.org/10.1007/BF01082381
Bibliographic databases:
Document Type: Article
UDC: 513.881
Language: Russian
Citation: E. D. Gluskin, “Diameter of the Minkowski compactum is approximately equal to n”, Funktsional. Anal. i Prilozhen., 15:1 (1981), 72–73; Funct. Anal. Appl., 15:1 (1981), 57–58
Citation in format AMSBIB
\Bibitem{Glu81}
\by E.~D.~Gluskin
\paper Diameter of the Minkowski compactum is approximately equal to $n$
\jour Funktsional. Anal. i Prilozhen.
\yr 1981
\vol 15
\issue 1
\pages 72--73
\mathnet{http://mi.mathnet.ru/faa1696}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=609798}
\zmath{https://zbmath.org/?q=an:0469.46017}
\transl
\jour Funct. Anal. Appl.
\yr 1981
\vol 15
\issue 1
\pages 57--58
\crossref{https://doi.org/10.1007/BF01082381}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MK89700009}
Linking options:
  • https://www.mathnet.ru/eng/faa1696
  • https://www.mathnet.ru/eng/faa/v15/i1/p72
  • This publication is cited in the following 58 articles:
    1. Tomasz Kobos, Marin Varivoda, “On the Banach–Mazur Distance in Small Dimensions”, Discrete Comput Geom, 2024  crossref
    2. S. V. Astashkin, “Sequences of independent functions and structure of rearrangement invariant spaces”, Russian Math. Surveys, 79:3 (2024), 375–457  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Tomasz Kobos, “A Uniform Lower Bound on the Norms of Hyperplane Projections of Spherical Polytopes”, Discrete Comput Geom, 70:1 (2023), 279  crossref
    4. Bogdan Grechuk, Landscape of 21st Century Mathematics, 2021, 103  crossref
    5. Ben Li, Carsten Schütt, Elisabeth M. Werner, “The Löwner Function of a Log-Concave Function”, J Geom Anal, 31:1 (2021), 423  crossref
    6. A. I. Khrabrov, “Volume ratio for the Cartesian product of convex bodies”, St. Petersburg Math. J., 32:5 (2021), 905–916  mathnet  crossref
    7. O. Guédon, A. E. Litvak, K. Tatarko, “Random polytopes obtained by matrices with heavy-tailed entries”, Commun. Contemp. Math., 22:04 (2020), 1950027  crossref
    8. Guillaume Aubrun, Ludovico Lami, Carlos Palazuelos, Stanisław J. Szarek, Andreas Winter, “Universal Gaps for XOR Games from Estimates on Tensor Norm Ratios”, Commun. Math. Phys., 375:1 (2020), 679  crossref
    9. Tomasz Kobos, “EXTREMAL BANACH–MAZUR DISTANCE BETWEEN A SYMMETRIC CONVEX BODY AND AN ARBITRARY CONVEX BODY ON THE PLANE”, Mathematika, 66:1 (2020), 161  crossref
    10. Joscha Prochno, Christoph Thäle, Nicola Turchi, “The isotropic constant of random polytopes with vertices on convex surfaces”, Journal of Complexity, 54 (2019), 101394  crossref
    11. Konstantin Tikhomirov, “On the Banach–Mazur distance to cross-polytope”, Advances in Mathematics, 345 (2019), 598  crossref
    12. Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, Erik Waingarten, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018, 787  crossref
    13. Serhii Brodiuk, Nazarii Palko, Andriy Prymak, “On Banach–Mazur distance between planar convex bodies”, Aequat. Math., 92:5 (2018), 993  crossref
    14. Julian Grote, Christoph Thäle, “Gaussian polytopes: A cumulant-based approach”, Journal of Complexity, 47 (2018), 1  crossref
    15. David Alonso-Gutiérrez, Joscha Prochno, “On the geometry of random convex sets between polytopes and zonotopes”, Journal of Mathematical Analysis and Applications, 450:1 (2017), 670  crossref
    16. Gilles Pisier, “ON THE METRIC ENTROPY OF THE BANACH–MAZUR COMPACTUM”, Mathematika, 61:1 (2015), 179  crossref
    17. Alexander E. Litvak, Mark Rudelson, Nicole Tomczak-Jaegermann, “On approximation by projections of polytopes with few facets”, Isr. J. Math., 203:1 (2014), 141  crossref
    18. Pierre Youssef, “RESTRICTED INVERTIBILITY AND THE BANACH–MAZUR DISTANCE TO THE CUBE”, Mathematika, 60:1 (2014), 201  crossref
    19. Alexander Brudnyi, “Banach spaces of polynomials as “large” subspaces of ℓ∞-spaces”, Journal of Functional Analysis, 267:4 (2014), 1285  crossref
    20. Marek Lassak, “Banach–Mazur Distance Between Convex Quadrangles”, Demonstratio Mathematica, 47:4 (2014)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :254
    References:64
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025