Citation:
M. Sh. Braverman, “Complementability of subspaces generated by independent functions in a symmetric space”, Funktsional. Anal. i Prilozhen., 16:2 (1982), 66–67; Funct. Anal. Appl., 16:2 (1982), 129–130
\Bibitem{Bra82}
\by M.~Sh.~Braverman
\paper Complementability of subspaces generated by independent functions in a symmetric space
\jour Funktsional. Anal. i Prilozhen.
\yr 1982
\vol 16
\issue 2
\pages 66--67
\mathnet{http://mi.mathnet.ru/faa1621}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=659167}
\zmath{https://zbmath.org/?q=an:0504.46021}
\transl
\jour Funct. Anal. Appl.
\yr 1982
\vol 16
\issue 2
\pages 129--130
\crossref{https://doi.org/10.1007/BF01081628}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982PY26000008}
Linking options:
https://www.mathnet.ru/eng/faa1621
https://www.mathnet.ru/eng/faa/v16/i2/p66
This publication is cited in the following 9 articles:
S. V. Astashkin, “Sequences of independent functions and structure of rearrangement invariant spaces”, Russian Math. Surveys, 79:3 (2024), 375–457
Sergey V. Astashkin, The Rademacher System in Function Spaces, 2020, 29
A. I. Novikova, “Fundamental function of Rademacher spaces”, Russian Math. (Iz. VUZ), 58:2 (2014), 31–38
S. V. Astashkin, “On subspaces generated by independent functions in symmetric spaces with Kruglov property”, St. Petersburg Math. J., 25:4 (2014), 513–527
S. V. Astashkin, “Rademacher functions in symmetric spaces”, Journal of Mathematical Sciences, 169:6 (2010), 725–886
N.L. Carothers, S.J. Dilworth, “Equidistributed random variables in Lp, q”, Journal of Functional Analysis, 84:1 (1989), 146
M. Sh. Braverman, “On Symmetric Spaces and Sequences of Independent Random Variables”, Theory Probab. Appl., 34:3 (1989), 506–509
Yves Raynaud, “Extracting almost symmetric sequences in rearrangement invariant spaces”, Math. Proc. Camb. Phil. Soc., 104:2 (1988), 303
M. Sh. Braverman, “Symmetric spaces and sequences of independent random variables”, Funct. Anal. Appl., 19:4 (1985), 315–316