Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 4, Pages 86–90
DOI: https://doi.org/10.4213/faa130
(Mi faa130)
 

This article is cited in 59 scientific papers (total in 59 papers)

Brief communications

On Homogenization of Periodic Parabolic Systems

T. A. Suslina

St. Petersburg State University, Faculty of Physics
References:
Abstract: We study homogenization in the small period limit for a periodic parabolic Cauchy problem in $\mathbb{R}^d$ and prove that the solutions converge in $L_2(\mathbb{R}^d)$ to the solution of the homogenized problem for each $t>0$. For the $L_2(\mathbb{R}^d)$-norm of the difference, we obtain an order-sharp estimate uniform with respect to the $L_2(\mathbb{R}^d)$-norm of the initial value.
Keywords: periodic parabolic system, Cauchy problem, homogenization, effective medium.
Received: 28.08.2004
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 4, Pages 309–312
DOI: https://doi.org/10.1007/s10688-005-0010-z
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: T. A. Suslina, “On Homogenization of Periodic Parabolic Systems”, Funktsional. Anal. i Prilozhen., 38:4 (2004), 86–90; Funct. Anal. Appl., 38:4 (2004), 309–312
Citation in format AMSBIB
\Bibitem{Sus04}
\by T.~A.~Suslina
\paper On Homogenization of Periodic Parabolic Systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 4
\pages 86--90
\mathnet{http://mi.mathnet.ru/faa130}
\crossref{https://doi.org/10.4213/faa130}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2117512}
\zmath{https://zbmath.org/?q=an:1074.35016}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 4
\pages 309--312
\crossref{https://doi.org/10.1007/s10688-005-0010-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227247000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-15244343215}
Linking options:
  • https://www.mathnet.ru/eng/faa130
  • https://doi.org/10.4213/faa130
  • https://www.mathnet.ru/eng/faa/v38/i4/p86
  • This publication is cited in the following 59 articles:
    1. Jun Geng, Bojing Shi, “Quantitative estimates in almost periodic homogenization of parabolic systems”, Calc. Var., 64:1 (2025)  crossref
    2. M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161  mathnet
    3. T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. S. E. Pastukhova, “L2-Estimates of Error in Homogenization of Parabolic Equations with Correctors Taken Into Account”, J Math Sci, 2024  crossref
    5. M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1  crossref
    6. S. E. Pastukhova, “$L^2$-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151  mathnet  crossref
    7. M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370  mathnet  crossref  crossref
    8. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239  mathnet
    10. M. Dorodnyi, “High-Energy Homogenization of a Multidimensional Nonstationary Schrödinger Equation”, Russ. J. Math. Phys., 30:4 (2023), 480  crossref
    11. A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959  crossref
    12. S. E. Pastukhova, “Homogenization Estimates for Parabolic Equations with Correctors”, J Math Sci, 276:1 (2023), 137  crossref
    13. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    14. T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570  mathnet  crossref
    15. Dorodnyi M.A. Suslina T.A., “Homogenization of a Non-Stationary Periodic Maxwell System in the Case of Constant Permeability”, J. Differ. Equ., 307 (2022), 348–388  crossref  mathscinet  isi
    16. T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funct. Anal. Appl., 56:3 (2022), 229–234  mathnet  crossref  crossref
    17. A. A. Mishulovich, “Usrednenie mnogomernykh parabolicheskikh uravnenii s periodicheskimi koeffitsientami na krayu vnutrennei lakuny”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 135–175  mathnet  mathscinet
    18. A. R. Akhmatova, E. S. Aksenova, V. A. Sloushch, T. A. Suslina, “Homogenization of the parabolic equation with periodic coefficients at the edge of a spectral gap”, Complex Variables and Elliptic Equations, 67:3 (2022), 523  crossref
    19. A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191  mathnet  crossref
    20. Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:694
    Full-text PDF :266
    References:80
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025