Loading [MathJax]/jax/output/CommonHTML/jax.js
Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2021, Volume 67, Issue 1, Pages 130–191
DOI: https://doi.org/10.22363/2413-3639-2021-67-1-130-191
(Mi cmfd413)
 

This article is cited in 5 scientific papers (total in 5 papers)

Averaging of higher-order parabolic equations with periodic coefficients

A. A. Miloslova, T. A. Suslina

Saint Petersburg State University, Saint Petersburg, Russia
Full-text PDF (661 kB) Citations (5)
References:
Abstract: In L2(Rd;Cn), we consider a wide class of matrix elliptic operators Aε of order 2p (where p2) with periodic rapidly oscillating coefficients (depending on x/ε). Here ε>0 is a small parameter. We study the behavior of the operator exponent eAετ for τ>0 and small ε. We show that the operator eAετ converges as ε0 in the operator norm in L2(Rd;Cn) to the exponent eA0τ of the effective operator A0. Also we obtain an approximation of the operator exponent eAετ in the norm of operators acting from L2(Rd;Cn) to the Sobolev space Hp(Rd;Cn). We derive estimates of errors of these approximations depending on two parameters: ε и τ. For a fixed τ>0 the errors have the exact order O(ε). We use the results to study the behavior of a solution of the Cauchy problem for the parabolic equation τuε(x,τ)=(Aεuε)(x,τ)+F(x,τ) in Rd.
Funding agency Grant number
Russian Science Foundation 17-11-01069
Document Type: Article
UDC: 517.955
Language: Russian
Citation: A. A. Miloslova, T. A. Suslina, “Averaging of higher-order parabolic equations with periodic coefficients”, Partial Differential Equations, CMFD, 67, no. 1, PFUR, M., 2021, 130–191
Citation in format AMSBIB
\Bibitem{MilSus21}
\by A.~A.~Miloslova, T.~A.~Suslina
\paper Averaging of higher-order parabolic equations with periodic coefficients
\inbook Partial Differential Equations
\serial CMFD
\yr 2021
\vol 67
\issue 1
\pages 130--191
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd413}
\crossref{https://doi.org/10.22363/2413-3639-2021-67-1-130-191}
Linking options:
  • https://www.mathnet.ru/eng/cmfd413
  • https://www.mathnet.ru/eng/cmfd/v67/i1/p130
  • This publication is cited in the following 5 articles:
    1. S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151  mathnet  crossref
    2. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239  mathnet
    4. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    5. T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:299
    Full-text PDF :114
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025