Abstract:
In L2(Rd;Cn), we consider a wide class of matrix elliptic operators Aε of order 2p (where p⩾2) with periodic rapidly oscillating coefficients (depending on x/ε). Here ε>0 is a small parameter. We study the behavior of the operator exponent e−Aετ for τ>0 and small ε. We show that the operator e−Aετ converges as ε→0 in the operator norm in L2(Rd;Cn) to the exponent e−A0τ of the effective operator A0. Also we obtain an approximation of the operator exponent e−Aετ in the norm of operators acting from L2(Rd;Cn) to the Sobolev space Hp(Rd;Cn). We derive estimates of errors of these approximations depending on two parameters: ε и τ. For a fixed τ>0 the errors have the exact order O(ε). We use the results to study the behavior of a solution of the Cauchy problem for the parabolic equation ∂τuε(x,τ)=−(Aεuε)(x,τ)+F(x,τ) in Rd.
Citation:
A. A. Miloslova, T. A. Suslina, “Averaging of higher-order parabolic equations with periodic coefficients”, Partial Differential Equations, CMFD, 67, no. 1, PFUR, M., 2021, 130–191
This publication is cited in the following 5 articles:
S. E. Pastukhova, “L2-otsenki pogreshnosti usredneniya parabolicheskikh uravnenii s uchetom korrektorov”, SMFN, 69, no. 1, Rossiiskii universitet druzhby narodov, M., 2023, 134–151
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518