Abstract:
Investigation of a class of matrix periodic elliptic second-order differential operators Aε in Rd with rapidly oscillating coefficients (depending on x/ε) is continued. The homogenization problem in the small period limit is studied. Approximation for the resolvent (Aε+I)−1 in the operator norm from L2(Rd) to H1(Rd) is obtained with an error of order ε. In this approximation, a corrector is taken into account. Moreover, the (L2→L2)-approximations of the so-called fluxes are obtained.
Citation:
M. Sh. Birman, T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1(Rd)”, Algebra i Analiz, 18:6 (2006), 1–130; St. Petersburg Math. J., 18:6 (2007), 857–955
\Bibitem{BirSus06}
\by M.~Sh.~Birman, T.~A.~Suslina
\paper Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class~$H^1(\mathbb R^d)$
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 6
\pages 1--130
\mathnet{http://mi.mathnet.ru/aa95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307356}
\zmath{https://zbmath.org/?q=an:1153.35012}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 6
\pages 857--955
\crossref{https://doi.org/10.1090/S1061-0022-07-00977-6}
Linking options:
https://www.mathnet.ru/eng/aa95
https://www.mathnet.ru/eng/aa/v18/i6/p1
This publication is cited in the following 93 articles:
Yi-Sheng Lim, Josip Žubrinić, “An Operator-Asymptotic Approach to Periodic Homogenization for Equations of Linearized Elasticity”, Asymptotic Analysis, 2025
M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161
T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759
M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1
M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239
D.I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570
D. I. Borisov, A. I. Mukhametrakhimova, “Uniform convergence for problems with perforation alogn a given manifold and with a nonlinear Robin condition on the boundaries of cavities”, St. Petersburg Math. J., 35:4 (2024), 611–652
Senik N.N., “Homogenization For Locally Periodic Elliptic Operators”, J. Math. Anal. Appl., 505:2 (2022), 125581
T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funct. Anal. Appl., 56:3 (2022), 229–234
A. A. Mishulovich, “Usrednenie mnogomernykh parabolicheskikh uravnenii s periodicheskimi koeffitsientami na krayu vnutrennei lakuny”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 135–175
A. A. Mishulovich, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo ellipticheskogo operatora na krayu spektralnoi lakuny: operatornye otsenki v energeticheskoi norme”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 50, Zap. nauchn. sem. POMI, 519, POMI, SPb., 2022, 114–151
Andrii Khrabustovskyi, Michael Plum, “Operator estimates for homogenization of the Robin Laplacian in a perforated domain”, Journal of Differential Equations, 338 (2022), 474
D. I. Borisov, “Norm Resolvent Convergence of Elliptic Operators in Domains with Thin Spikes”, J Math Sci, 261:3 (2022), 366
A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191
Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021
Meshkova Yu.M., “On Operator Error Estimates For Homogenization of Hyperbolic Systems With Periodic Coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660