Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 6, Pages 1–130 (Mi aa95)  

This article is cited in 93 scientific papers (total in 93 papers)

Expository Surveys

Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1(Rd)

M. Sh. Birman, T. A. Suslina

St. Petersburg State University, Faculty of Physics
References:
Abstract: Investigation of a class of matrix periodic elliptic second-order differential operators Aε in Rd with rapidly oscillating coefficients (depending on x/ε) is continued. The homogenization problem in the small period limit is studied. Approximation for the resolvent (Aε+I)1 in the operator norm from L2(Rd) to H1(Rd) is obtained with an error of order ε. In this approximation, a corrector is taken into account. Moreover, the (L2L2)-approximations of the so-called fluxes are obtained.
Received: 20.09.2006
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 6, Pages 857–955
DOI: https://doi.org/10.1090/S1061-0022-07-00977-6
Bibliographic databases:
Document Type: Article
MSC: 35P99, 35Q99
Language: Russian
Citation: M. Sh. Birman, T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1(Rd)”, Algebra i Analiz, 18:6 (2006), 1–130; St. Petersburg Math. J., 18:6 (2007), 857–955
Citation in format AMSBIB
\Bibitem{BirSus06}
\by M.~Sh.~Birman, T.~A.~Suslina
\paper Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class~$H^1(\mathbb R^d)$
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 6
\pages 1--130
\mathnet{http://mi.mathnet.ru/aa95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307356}
\zmath{https://zbmath.org/?q=an:1153.35012}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 6
\pages 857--955
\crossref{https://doi.org/10.1090/S1061-0022-07-00977-6}
Linking options:
  • https://www.mathnet.ru/eng/aa95
  • https://www.mathnet.ru/eng/aa/v18/i6/p1
  • This publication is cited in the following 93 articles:
    1. Yi-Sheng Lim, Josip Žubrinić, “An Operator-Asymptotic Approach to Periodic Homogenization for Equations of Linearized Elasticity”, Asymptotic Analysis, 2025  crossref
    2. M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161  mathnet
    3. T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. M. A. Dorodnyi, “High-frequency homogenization of multidimensional hyperbolic equations”, Applicable Analysis, 2024, 1  crossref
    5. M. A. Dorodnyi, T. A. Suslina, “Homogenization of hyperbolic equations: operator estimates with correctors taken into account”, Funct. Anal. Appl., 57:4 (2023), 364–370  mathnet  crossref  crossref
    6. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239  mathnet
    8. D.I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41  crossref
    9. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    10. T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570  mathnet  crossref
    11. D. I. Borisov, A. I. Mukhametrakhimova, “Uniform convergence for problems with perforation alogn a given manifold and with a nonlinear Robin condition on the boundaries of cavities”, St. Petersburg Math. J., 35:4 (2024), 611–652  mathnet  crossref
    12. Senik N.N., “Homogenization For Locally Periodic Elliptic Operators”, J. Math. Anal. Appl., 505:2 (2022), 125581  crossref  mathscinet  isi
    13. T. A. Suslina, “Homogenization of the Schrödinger-type equations: operator estimates with correctors”, Funct. Anal. Appl., 56:3 (2022), 229–234  mathnet  crossref  crossref
    14. A. A. Mishulovich, “Usrednenie mnogomernykh parabolicheskikh uravnenii s periodicheskimi koeffitsientami na krayu vnutrennei lakuny”, Matematicheskie voprosy teorii rasprostraneniya voln. 52, Zap. nauchn. sem. POMI, 516, POMI, SPb., 2022, 135–175  mathnet  mathscinet
    15. A. A. Mishulovich, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo ellipticheskogo operatora na krayu spektralnoi lakuny: operatornye otsenki v energeticheskoi norme”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 50, Zap. nauchn. sem. POMI, 519, POMI, SPb., 2022, 114–151  mathnet  mathscinet
    16. Andrii Khrabustovskyi, Michael Plum, “Operator estimates for homogenization of the Robin Laplacian in a perforated domain”, Journal of Differential Equations, 338 (2022), 474  crossref
    17. D. I. Borisov, “Norm Resolvent Convergence of Elliptic Operators in Domains with Thin Spikes”, J Math Sci, 261:3 (2022), 366  crossref
    18. A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191  mathnet  crossref
    19. Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021  crossref  isi
    20. Meshkova Yu.M., “On Operator Error Estimates For Homogenization of Hyperbolic Systems With Periodic Coefficients”, J. Spectr. Theory, 11:2 (2021), 587–660  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:1000
    Full-text PDF :313
    References:111
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025