Citation:
R. G. Shterenberg, “On the structure of the lower spectral edge for a magnetic Schrödinger operator with small magnetic potential”, Algebra i Analiz, 17:5 (2005), 232–243; St. Petersburg Math. J., 17:5 (2006), 865–873
\Bibitem{Sht05}
\by R.~G.~Shterenberg
\paper On the structure of the lower spectral edge for a~magnetic Schr\"odinger operator with small magnetic potential
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 5
\pages 232--243
\mathnet{http://mi.mathnet.ru/aa712}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2241429}
\zmath{https://zbmath.org/?q=an:1264.35102}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 5
\pages 865--873
\crossref{https://doi.org/10.1090/S1061-0022-06-00933-2}
Linking options:
https://www.mathnet.ru/eng/aa712
https://www.mathnet.ru/eng/aa/v17/i5/p232
This publication is cited in the following 13 articles:
Nikolay Filonov, Ilya Kachkovskiy, “On Spectral Bands of Discrete Periodic Operators”, Commun. Math. Phys., 405:2 (2024)
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
Borisov D., Taeufer M., Veselic I., “Quantum Hamiltonians With Weak Random Abstract Perturbation. II. Localization in the Expanded Spectrum”, J. Stat. Phys., 182:1 (2021), 1
E. Korotyaev, N. Saburova, “Spectral estimates for Schrödinger operators on periodic discrete graphs”, St. Petersburg Math. J., 30:4 (2019), 667–698
Filonov N. Kachkovskiy I., “On the Structure of Band Edges of 2-Dimensional Periodic Elliptic Operators”, Acta Math., 221:1 (2018), 59–80
Korotyaev E., Saburova N., “Magnetic Schrödinger operators on periodic discrete graphs”, J. Funct. Anal., 272:4 (2017), 1625–1660
Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523
Korotyaev E. Saburova N., “Effective Masses For Laplacians on Periodic Graphs”, J. Math. Anal. Appl., 436:1 (2016), 104–130
Birman M.S., Suslina T.A., “Homogenization of Periodic Differential Operators as a Spectral Threshold Effect”, New Trends in Mathematical Physics, 2009, 667–683
M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928
M. Sh. Birman, T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1(Rd)”, St. Petersburg Math. J., 18:6 (2007), 857–955
M. Sh. Birman, T. A. Suslina, “Averaging of periodic elliptic differential operators with the account of a corrector”, St. Petersburg Math. J., 17:6 (2006), 897–973