Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/AMS-Regular.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2005, Volume 17, Issue 5, Pages 232–243 (Mi aa712)  

This article is cited in 13 scientific papers (total in 13 papers)

Research Papers

On the structure of the lower spectral edge for a magnetic Schrödinger operator with small magnetic potential

R. G. Shterenberg

St. Petersburg State University, Faculty of Physics
References:
Received: 24.02.2005
English version:
St. Petersburg Mathematical Journal, 2006, Volume 17, Issue 5, Pages 865–873
DOI: https://doi.org/10.1090/S1061-0022-06-00933-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. G. Shterenberg, “On the structure of the lower spectral edge for a magnetic Schrödinger operator with small magnetic potential”, Algebra i Analiz, 17:5 (2005), 232–243; St. Petersburg Math. J., 17:5 (2006), 865–873
Citation in format AMSBIB
\Bibitem{Sht05}
\by R.~G.~Shterenberg
\paper On the structure of the lower spectral edge for a~magnetic Schr\"odinger operator with small magnetic potential
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 5
\pages 232--243
\mathnet{http://mi.mathnet.ru/aa712}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2241429}
\zmath{https://zbmath.org/?q=an:1264.35102}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 5
\pages 865--873
\crossref{https://doi.org/10.1090/S1061-0022-06-00933-2}
Linking options:
  • https://www.mathnet.ru/eng/aa712
  • https://www.mathnet.ru/eng/aa/v17/i5/p232
  • This publication is cited in the following 13 articles:
    1. Nikolay Filonov, Ilya Kachkovskiy, “On Spectral Bands of Discrete Periodic Operators”, Commun. Math. Phys., 405:2 (2024)  crossref
    2. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Borisov D., Taeufer M., Veselic I., “Quantum Hamiltonians With Weak Random Abstract Perturbation. II. Localization in the Expanded Spectrum”, J. Stat. Phys., 182:1 (2021), 1  crossref  mathscinet  isi  scopus
    4. E. Korotyaev, N. Saburova, “Spectral estimates for Schrödinger operators on periodic discrete graphs”, St. Petersburg Math. J., 30:4 (2019), 667–698  mathnet  crossref  mathscinet  isi  elib
    5. Filonov N. Kachkovskiy I., “On the Structure of Band Edges of 2-Dimensional Periodic Elliptic Operators”, Acta Math., 221:1 (2018), 59–80  crossref  mathscinet  zmath  isi  scopus
    6. Korotyaev E., Saburova N., “Magnetic Schrödinger operators on periodic discrete graphs”, J. Funct. Anal., 272:4 (2017), 1625–1660  crossref  mathscinet  zmath  isi  scopus
    7. Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523  crossref  mathscinet  zmath  isi  elib  scopus
    8. Korotyaev E. Saburova N., “Effective Masses For Laplacians on Periodic Graphs”, J. Math. Anal. Appl., 436:1 (2016), 104–130  crossref  mathscinet  zmath  isi  elib  scopus
    9. Kuchment P., “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc., 53:3 (2016), 343–414  crossref  mathscinet  zmath  isi  elib  scopus
    10. Birman M.S., Suslina T.A., “Homogenization of Periodic Differential Operators as a Spectral Threshold Effect”, New Trends in Mathematical Physics, 2009, 667–683  crossref  zmath  isi
    11. M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928  mathnet  crossref  mathscinet  zmath  isi
    12. M. Sh. Birman, T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1(Rd)”, St. Petersburg Math. J., 18:6 (2007), 857–955  mathnet  crossref  mathscinet  zmath
    13. M. Sh. Birman, T. A. Suslina, “Averaging of periodic elliptic differential operators with the account of a corrector”, St. Petersburg Math. J., 17:6 (2006), 897–973  mathnet  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:515
    Full-text PDF :162
    References:101
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025