Citation:
T. A. Suslina, “Homogenization of a stationary periodic Maxwell system in a bounded domain with constant magnetic permeability”, Algebra i Analiz, 30:3 (2018), 169–209; St. Petersburg Math. J., 30:3 (2019), 515–544
\Bibitem{Sus18}
\by T.~A.~Suslina
\paper Homogenization of a~stationary periodic Maxwell system in a~bounded domain with constant magnetic permeability
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 3
\pages 169--209
\mathnet{http://mi.mathnet.ru/aa1601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3812005}
\elib{https://elibrary.ru/item.asp?id=32855070}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 3
\pages 515--544
\crossref{https://doi.org/10.1090/spmj/1557}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464555700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064760620}
Linking options:
https://www.mathnet.ru/eng/aa1601
https://www.mathnet.ru/eng/aa/v30/i3/p169
This publication is cited in the following 8 articles:
Lin Yang, Learning and Analytics in Intelligent Systems, 38, Recent Trends in Educational Technology and Administration, 2024, 55
Tianjie Yan, 2024 International Conference on Interactive Intelligent Systems and Techniques (IIST), 2024, 536
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
Dorodnyi M.A. Suslina T.A., “Homogenization of a Non-Stationary Periodic Maxwell System in the Case of Constant Permeability”, J. Differ. Equ., 307 (2022), 348–388
Renata Bunoiu, Lucas Chesnel, Karim Ramdani, Mahran Rihani, “Homogenization of Maxwell's equations and related scalar problems with sign-changing coefficients”, Annales de la Faculté des sciences de Toulouse : Mathématiques, 30:5 (2022), 1075
T. A. Suslina, “Ob usrednenii statsionarnoi periodicheskoi sistemy Maksvella v ogranichennoi oblasti”, Funkts. analiz i ego pril., 53:1 (2019), 88–92
T. A. Suslina, “Homogenization of the stationary Maxwell system with periodic coefficients in a bounded domain”, Arch. Ration. Mech. Anal., 234:2 (2019), 453–507