Citation:
T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, Algebra i Analiz, 29:2 (2017), 139–192; St. Petersburg Math. J., 29:2 (2018), 325–362
D. I. Borisov, “Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms”, Math. Notes, 113:1 (2023), 138–142
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
Denis Ivanovich Borisov, Dmitry Mikhailovich Polyakov, “Resolvent Convergence for Differential–Difference Operators with Small Variable Translations”, Mathematics, 11:20 (2023), 4260
D.I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
D. I. Borisov, A. I. Mukhametrakhimova, “Uniform convergence for problems with perforation alogn a given manifold and with a nonlinear Robin condition on the boundaries of cavities”, St. Petersburg Math. J., 35:4 (2024), 611–652
D. I. Borisov, G. Cardone, G. A. Chechkin, Yu. O. Koroleva, “On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary”, Calc. Var. Partial Differ. Equ., 60:1 (2021), 48
A. G. Chechkina, “Operator estimates for the Steklov problem in an unbounded domain with rapidly changing conditions on the boundary”, Dokl. Math., 104:1 (2021), 205–207
Ya. Xu, W. Niu, “Convergence rates in almost-periodic homogenization of higher-order elliptic systems”, Asymptotic Anal., 123:1-2 (2021), 95–137
V. Tewary, “Combined effects of homogenization and singular perturbations: a Bloch wave approach”, Netw. Heterog. Media, 16:3 (2021), 427–458
Z. W. Huang, Y. F. Xing, Y. H. Gao, “A two-scale asymptotic expansion method for periodic composite Euler beams”, Compos. Struct., 241 (2020), 112033
T. A. Suslina, “Homogenization of higher-order parabolic systems in a bounded domain”, Appl. Anal., 98:1-2, SI (2019), 3–31
W. Niu, Ya. Xu, “Uniform boundary estimates in homogenization of higher-order elliptic systems”, Ann. Mat. Pura Appl., 198:1 (2019), 97–128
A. B. Antonevich, T. G. Shagova, “Umnozhenie raspredelenii i algebry mnemofunktsii”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65, no. 3, Rossiiskii universitet druzhby narodov, M., 2019, 339–389
W. Niu, Yu. Yuan, “Convergence rate in homogenization of elliptic systems with singular perturbations”, J. Math. Phys., 60:11 (2019), 111509
Julia Orlik, Heiko Andrä, Sarah Staub, Integral Methods in Science and Engineering, 2019, 283
W. Niu, Zh. Shen, Ya. Xu, “Convergence rates and interior estimates in homogenization of higher order elliptic systems”, J. Funct. Anal., 274:8 (2018), 2356–2398
T. A. Suslina, “Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients”, Complex Var. Elliptic Equ., 63:7–8, SI (2018), 1185–1215
W. Niu, Ya. Xu, “Convergence rates in homogenization of higher-order parabolic systems”, Discret. Contin. Dyn. Syst., 38:8 (2018), 4203–4229