Citation:
T. A. Suslina, “Homogenization of elliptic operators with periodic coefficients depending on the spectral parameter”, Algebra i Analiz, 27:4 (2015), 87–166; St. Petersburg Math. J., 27:4 (2016), 651–708
\Bibitem{Sus15}
\by T.~A.~Suslina
\paper Homogenization of elliptic operators with periodic coefficients depending on the spectral parameter
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 4
\pages 87--166
\mathnet{http://mi.mathnet.ru/aa1452}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3580194}
\elib{https://elibrary.ru/item.asp?id=24849910}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 4
\pages 651--708
\crossref{https://doi.org/10.1090/spmj/1412}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000383057300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978422585}
Linking options:
https://www.mathnet.ru/eng/aa1452
https://www.mathnet.ru/eng/aa/v27/i4/p87
This publication is cited in the following 21 articles:
T. A. Suslina, “Homogenization of elliptic and parabolic equations with periodic coefficients in a bounded domain under the Neumann condition”, Izv. Math., 88:4 (2024), 678–759
I. Y. Popov, E. S. Trifanova, A. S. Bagmutov, I. V. Blinova, “Barrier composed of perforated resonators and boundary conditions”, Eurasian Math. J., 15:3 (2024), 68–76
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
Wei Wang, “Uniform estimates of resolvents in homogenization theory of elliptic systems”, Journal of Differential Equations, 370 (2023), 1
Wei Wang, “Uniform Estimates of Resolvents in Homogenization Theory of Elliptic Systems”, 2023
A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959
Meshkova Yu., “Note on Quantitative Homogenization Results For Parabolic Systems in R-D”, J. Evol. Equ., 21:1 (2021), 763–769
A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191
N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72
T. A. Suslina, “Homogenization of higher-order parabolic systems in a bounded domain”, Appl. Anal., 98:1-2, SI (2019), 3–31
T. A. Suslina, “Homogenization of the stationary Maxwell system with periodic coefficients in a bounded domain”, Arch. Ration. Mech. Anal., 234:2 (2019), 453–507
R. Chill, A. F. M. Elst, “Weak and strong approximation of semigroups on Hilbert spaces”, Integr. Equ. Oper. Theory, 90:1 (2018), 9
T. A. Suslina, “Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 1185–1215
T. A. Suslina, “Homogenization of a stationary periodic Maxwell system in a bounded domain with constant magnetic permeability”, St. Petersburg Math. J., 30:3 (2019), 515–544
Khrabustovskyi A. Post O., “Operator Estimates For the Crushed Ice Problem”, Asymptotic Anal., 110:3-4 (2018), 137–161
T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, St. Petersburg Math. J., 29:2 (2018), 325–362
Yu. M. Meshkova, T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funct. Anal. Appl., 51:3 (2017), 230–235
Yu. M. Meshkova, T. A. Suslina, “Homogenization of the first initial boundary value problem for parabolic systems: Operator error estimates”, St. Petersburg Math. J., 29:6 (2018), 935–978
A. A. Kukushkin, T. A. Suslina, “Homogenization of high order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 28:1 (2017), 65–108
Meshkova Yu.M., Suslina T.A., “Two-parametric error estimates in homogenization of second-order elliptic systems in Rd”, Appl. Anal., 95:7, SI (2016), 1413–1448