Abstract:
The homogenization problem in the small period limit for a stationary periodic Maxwell system in R3 is studied. It is assumed that the dielectric permittivity and the magnetic permeability are rapidly oscillating (depending on x/ε), positive definite, and bounded matrix-valued functions. For all four physical fields (the strength of the electric field, the strength of the magnetic field, the electric displacement vector, and the magnetic displacement vector), uniform approximations in the L2(R3)-norm are obtained with the (order-sharp) error term of order. Besides solutions of the homogenized Maxwell system, the approximations contain rapidly oscillating terms of zero order that weakly tend to zero. These terms can be interpreted as correctors of zero order.
Citation:
T. A. Suslina, “Homogenization with corrector for a stationary periodic Maxwell system”, Algebra i Analiz, 19:3 (2007), 183–235; St. Petersburg Math. J., 19:3 (2008), 455–494
\Bibitem{Sus07}
\by T.~A.~Suslina
\paper Homogenization with corrector for a~stationary periodic Maxwell system
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 3
\pages 183--235
\mathnet{http://mi.mathnet.ru/aa124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2340710}
\zmath{https://zbmath.org/?q=an:1202.35319}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 3
\pages 455--494
\crossref{https://doi.org/10.1090/S1061-0022-08-01006-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653300006}
Linking options:
https://www.mathnet.ru/eng/aa124
https://www.mathnet.ru/eng/aa/v19/i3/p183
This publication is cited in the following 12 articles:
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
Cherednichenko K. D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67
T. A. Suslina, “Ob usrednenii statsionarnoi periodicheskoi sistemy Maksvella v ogranichennoi oblasti”, Funkts. analiz i ego pril., 53:1 (2019), 88–92
Suslina T.A., “Homogenization of the Stationary Maxwell System With Periodic Coefficients in a Bounded Domain”, Arch. Ration. Mech. Anal., 234:2 (2019), 453–507
T. A. Suslina, “Homogenization of a stationary periodic Maxwell system in a bounded domain with constant magnetic permeability”, St. Petersburg Math. J., 30:3 (2019), 515–544
Waurick M., “Nonlocal H-Convergence”, Calc. Var. Partial Differ. Equ., 57:6 (2018), 159
Borisov D. Cardone G. Durante T., “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. R. Soc. Edinb. Sect. A-Math., 146:6 (2016), 1115–1158
Holloway Ch.L. Kuester E.F., “Corrections to the Classical Continuity Boundary Conditions at the Interface of a Composite Medium”, Photonics Nanostruct., 11:4 (2013), 397–422
Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. Henri Poincaré, 11:8 (2010), 1591–1627
Birman M.S., Suslina T.A., “Homogenization of Periodic Differential Operators as a Spectral Threshold Effect”, New Trends in Mathematical Physics, 2009, 667–683
M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928