Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 3, Pages 183–235 (Mi aa124)  

This article is cited in 12 scientific papers (total in 12 papers)

Research Papers

Homogenization with corrector for a stationary periodic Maxwell system

T. A. Suslina

St. Petersburg State University, Faculty of Physics
References:
Abstract: The homogenization problem in the small period limit for a stationary periodic Maxwell system in R3 is studied. It is assumed that the dielectric permittivity and the magnetic permeability are rapidly oscillating (depending on x/ε), positive definite, and bounded matrix-valued functions. For all four physical fields (the strength of the electric field, the strength of the magnetic field, the electric displacement vector, and the magnetic displacement vector), uniform approximations in the L2(R3)-norm are obtained with the (order-sharp) error term of order. Besides solutions of the homogenized Maxwell system, the approximations contain rapidly oscillating terms of zero order that weakly tend to zero. These terms can be interpreted as correctors of zero order.
Keywords: Periodic Maxwell operator, homogenization, effective medium, corrector.
Received: 08.02.2007
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 3, Pages 455–494
DOI: https://doi.org/10.1090/S1061-0022-08-01006-6
Bibliographic databases:
Document Type: Article
MSC: 35P20, 35Q60
Language: Russian
Citation: T. A. Suslina, “Homogenization with corrector for a stationary periodic Maxwell system”, Algebra i Analiz, 19:3 (2007), 183–235; St. Petersburg Math. J., 19:3 (2008), 455–494
Citation in format AMSBIB
\Bibitem{Sus07}
\by T.~A.~Suslina
\paper Homogenization with corrector for a~stationary periodic Maxwell system
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 3
\pages 183--235
\mathnet{http://mi.mathnet.ru/aa124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2340710}
\zmath{https://zbmath.org/?q=an:1202.35319}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 3
\pages 455--494
\crossref{https://doi.org/10.1090/S1061-0022-08-01006-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653300006}
Linking options:
  • https://www.mathnet.ru/eng/aa124
  • https://www.mathnet.ru/eng/aa/v19/i3/p183
  • This publication is cited in the following 12 articles:
    1. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    3. Cherednichenko K. D'Onofrio S., “Operator-Norm Homogenisation Estimates For the System of Maxwell Equations on Periodic Singular Structures”, Calc. Var. Partial Differ. Equ., 61:2 (2022), 67  crossref  mathscinet  isi  scopus
    4. T. A. Suslina, “Ob usrednenii statsionarnoi periodicheskoi sistemy Maksvella v ogranichennoi oblasti”, Funkts. analiz i ego pril., 53:1 (2019), 88–92  mathnet  crossref  mathscinet  elib
    5. Suslina T.A., “Homogenization of the Stationary Maxwell System With Periodic Coefficients in a Bounded Domain”, Arch. Ration. Mech. Anal., 234:2 (2019), 453–507  crossref  mathscinet  isi  scopus
    6. T. A. Suslina, “Homogenization of a stationary periodic Maxwell system in a bounded domain with constant magnetic permeability”, St. Petersburg Math. J., 30:3 (2019), 515–544  mathnet  crossref  mathscinet  isi  elib
    7. Waurick M., “Nonlocal H-Convergence”, Calc. Var. Partial Differ. Equ., 57:6 (2018), 159  crossref  mathscinet  zmath  isi  scopus
    8. Borisov D. Cardone G. Durante T., “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. R. Soc. Edinb. Sect. A-Math., 146:6 (2016), 1115–1158  crossref  mathscinet  zmath  isi  elib  scopus
    9. Holloway Ch.L. Kuester E.F., “Corrections to the Classical Continuity Boundary Conditions at the Interface of a Composite Medium”, Photonics Nanostruct., 11:4 (2013), 397–422  crossref  adsnasa  isi  elib  scopus
    10. Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. Henri Poincaré, 11:8 (2010), 1591–1627  crossref  mathscinet  zmath  adsnasa  isi
    11. Birman M.S., Suslina T.A., “Homogenization of Periodic Differential Operators as a Spectral Threshold Effect”, New Trends in Mathematical Physics, 2009, 667–683  crossref  zmath  isi
    12. M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:640
    Full-text PDF :201
    References:111
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025