Аннотация:
Излагается алгоритм решения следующей задачи: пусть $F(x_1,\dots,x_n)$ – рациональная функция указанных переменных с рациональными (действительными, комплексными) коэффициентами; выяснить, существует ли рациональная функция $G(v,w,x_2,\dots,x_n)$ с коэффициентами из того же поля такая, что $\sum_{x_1=v}^wF(x_1,\dots,x_n)=G(v,w,x_2,\dots,x_n)$ для всех целочисленных значений $v\le w$. Если $G$ существует – то построить ее. Обсуждается реализация алгоритма на языке ЛИСП.
Shaoshi Chen, Lixin Du, Manuel Kauers, Rong-Hua Wang, “Reduction-based creative telescoping for P-recursive sequences via integral bases”, Journal of Symbolic Computation, 126 (2025), 102341
Qing-Hu Hou, Yarong Wei, “Rational solutions to the first order difference equations in the bivariate difference field”, Journal of Symbolic Computation, 124 (2024), 102308
Evans Doe Ocansey, Carsten Schneider, “Representation of hypergeometric products of higher nesting depths in difference rings”, Journal of Symbolic Computation, 120 (2024), 102220
Carlos E. Arreche, Hari Sitaula, Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation, 2024, 65
Yarong Wei, “Polynomial solutions to the first order difference equations in the bivariate difference field”, Journal of Difference Equations and Applications, 2024, 1
Carlos E Arreche, Yi Zhang, “Twisted Mahler Discrete Residues”, International Mathematics Research Notices, 2024
Andrey A. Grigoriev, Evgeniy K. Leinartas, Alexander P. Lyapin, “Summation of functions and polynomial solutions to a multidimensional difference equation”, Журн. СФУ. Сер. Матем. и физ., 16:2 (2023), 153–161
Е. В. Зима, “О структуре решений ключевого уравнения Госпера в задачах символьного суммирования”, Ж. вычисл. матем. и матем. физ., 63:1 (2023), 43–50; E. V. Zima, “On the structure of solutions to the key Gosper equation in problems of symbolic summation”, Comput. Math. Math. Phys., 63:1 (2023), 40–47
Rong-Hua Wang, Michael X.X. Zhong, “q-Rational reduction and q-analogues of series for π”, Journal of Symbolic Computation, 116 (2023), 58
Carlos E. Arreche, Yi Zhang, Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, 2022, 525
Sergei A. Abramov, Manuel Bronstein, Marko Petkovšek, Carsten Schneider, “On rational and hypergeometric solutions of linear ordinary difference equations in ΠΣ⁎-field extensions”, Journal of Symbolic Computation, 107 (2021), 23
Moulay A. Barkatou, Thomas Cluzeau, Ali El Hajj, Lecture Notes in Computer Science, 12865, Computer Algebra in Scientific Computing, 2021, 42
Yan-Ping Mu, “Minimal universal denominators for systems of linear recurrences”, Journal of Difference Equations and Applications, 22:10 (2016), 1472
Olga A. Shishkina, “The Euler–Maclaurin formula and differential operators of infinite order”, Журн. СФУ. Сер. Матем. и физ., 8:1 (2015), 86–93
О. А. Шишкина, “Формула Эйлера–Маклорена для рационального параллелотопа”, Известия Иркутского государственного университета. Серия Математика, 13 (2015), 56–71
Qing-Hu Hou, Rong-Hua Wang, “An algorithm for deciding the summability of bivariate rational functions”, Advances in Applied Mathematics, 64 (2015), 31
A. Gheffar, S. Abramov, “Valuations of rational solutions of linear difference equations at irreducible polynomials”, Advances in Applied Mathematics, 47:2 (2011), 352
S. A. Abramov, A. Gheffar, D. E. Khmelnov, Lecture Notes in Computer Science, 6244, Computer Algebra in Scientific Computing, 2010, 4
Georgy P. Egorychev, Eugene V. Zima, Handbook of Algebra, 5, 2008, 459
J. Gerhard, M. Giesbrecht, A. Storjohann, E. V. Zima, Proceedings of the 2003 international symposium on Symbolic and algebraic computation, 2003, 119