Аннотация:
Рассматривается соотношение F(x+1)+aF(x)=R(x), где R(x) – рациональная функция. Предлагается метод выделения рациональной компоненты (слагаемого) решения этого соотношения.
Образец цитирования:
С. А. Абрамов, “Рациональная компонента решения линейного рекуррентного соотношения первого порядка с рациональной правой частью”, Ж. вычисл. матем. и матем. физ., 15:4 (1975), 1035–1039; U.S.S.R. Comput. Math. Math. Phys., 15:4 (1975), 216–221
\RBibitem{Abr75}
\by С.~А.~Абрамов
\paper Рациональная компонента решения линейного рекуррентного соотношения первого порядка с рациональной правой частью
\jour Ж. вычисл. матем. и матем. физ.
\yr 1975
\vol 15
\issue 4
\pages 1035--1039
\mathnet{http://mi.mathnet.ru/zvmmf6237}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0393909}
\zmath{https://zbmath.org/?q=an:0326.65069}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1975
\vol 15
\issue 4
\pages 216--221
\crossref{https://doi.org/10.1016/0041-5553(75)90181-0}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf6237
https://www.mathnet.ru/rus/zvmmf/v15/i4/p1035
Эта публикация цитируется в следующих 21 статьяx:
Shaoshi Chen, Hao Du, Yiman Gao, Ziming Li, “Reducing Hyperexponential Functions over Monomial Extensions”, J Syst Sci Complex, 2024
Carlos E. Arreche, Hari Sitaula, Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation, 2024, 65
Rong-Hua Wang, Michael X.X. Zhong, “Polynomial reduction for holonomic sequences and applications in π-series and congruences”, Advances in Applied Mathematics, 150 (2023), 102568
Carsten Schneider, Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation, 2023, 498
Rong-Hua Wang, Michael X.X. Zhong, “q-Rational reduction and q-analogues of series for π”, Journal of Symbolic Computation, 116 (2023), 58
Shaoshi Chen, Qing-Hu Hou, Hui Huang, George Labahn, Rong-Hua Wang, “Constructing minimal telescopers for rational functions in three discrete variables”, Advances in Applied Mathematics, 141 (2022), 102389
Mark Giesbrecht, Hui Huang, George Labahn, Eugene Zima, “Efficient rational creative telescoping”, Journal of Symbolic Computation, 109 (2022), 57
Qing-Hu Hou, Yan-Ping Mu, Doron Zeilberger, “Polynomial reduction and supercongruences”, Journal of Symbolic Computation, 103 (2021), 127
Carsten Schneider, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 423
Carsten Schneider, “Minimal Representations and Algebraic Relations for Single Nested Products”, Program Comput Soft, 46:2 (2020), 133
Hao Du, Hui Huang, Ziming Li, Springer Proceedings in Mathematics & Statistics, 226, Advances in Computer Algebra, 2018, 105
Shaoshi Chen, Springer Proceedings in Mathematics & Statistics, 226, Advances in Computer Algebra, 2018, 93
Carsten Schneider, “Summation Theory II: Characterizations of RΠΣ⁎-extensions and algorithmic aspects”, Journal of Symbolic Computation, 80 (2017), 616
Shaoshi Chen, Hui Huang, Manuel Kauers, Ziming Li, Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, 2015, 117
Carsten Schneider, Lecture Notes in Computer Science, 8942, Computer Algebra and Polynomials, 2015, 157
Eugene V. Zima, “Accelerating Indefinite Summation: Simple Classes of Summands”, Math.Comput.Sci., 7:4 (2013), 455
Shaoshi Chen, Manuel Kauers, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, 2012, 122
Charlotte Hardouin, Michael F. Singer, “Differential Galois theory of linear difference equations”, Math. Ann., 342:2 (2008), 333
Georgy P. Egorychev, Eugene V. Zima, Handbook of Algebra, 5, 2008, 459
J. Gerhard, M. Giesbrecht, A. Storjohann, E. V. Zima, Proceedings of the 2003 international symposium on Symbolic and algebraic computation, 2003, 119