Аннотация:
Проведена групповая классификация уравнения вида Tt=(KTx)x+Q, K>0, с произвольным элементом {K(T),Q(T)}. Для каждой специализации произвольного элемента, дающей расширение основной группы, построена оптимальная система подгрупп.
Поступила в редакцию: 24.12.1980 Исправленный вариант: 15.03.1982
\RBibitem{Dor82}
\by В.~А.~Дородницын
\paper Об инвариантных решениях уравнения нелинейной теплопроводности с источником
\jour Ж. вычисл. матем. и матем. физ.
\yr 1982
\vol 22
\issue 6
\pages 1393--1400
\mathnet{http://mi.mathnet.ru/zvmmf5632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=683596}
\zmath{https://zbmath.org/?q=an:0535.35040}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1982
\vol 22
\issue 6
\pages 115--122
\crossref{https://doi.org/10.1016/0041-5553(82)90102-1}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf5632
https://www.mathnet.ru/rus/zvmmf/v22/i6/p1393
Эта публикация цитируется в следующих 74 статьяx:
Jicheng Yu, Yuqiang Feng, “On the generalized time fractional reaction–diffusion equation: Lie symmetries, exact solutions and conservation laws”, Chaos, Solitons & Fractals, 182 (2024), 114855
MÁTYÁS LÁSZLÓ, BARNA IMRE FERENC, “Self-Similar and Traveling Wave Solutions of Diffusion Equations with Concentration Dependent Diffusion Coefficients”, Rom. J. Phys., 69:5-6 (2024), 106
Jordan Hristov, “Approximate Solutions to a Degenerate Diffusion Equation with Absorption and Production: A Sharp Front Approach”, Applied Sciences, 15:1 (2024), 55
Daniel J Arrigo, Travis C Chism, “Symmetry classification of plane deformations of hyperelastic compressible materials”, Mathematics and Mechanics of Solids, 28:6 (2023), 1339
А. В. Аксенов, А. Д. Полянин, “Обзор методов построения точных решений уравнений математической физики, основанных на использовании более простых решений”, ТМФ, 211:2 (2022), 149–180; A. V. Aksenov, A. D. Polyanin, “Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions”, Theoret. and Math. Phys., 211:2 (2022), 567–594
Andrei D. Polyanin, Alexei I. Zhurov, “Multi-Parameter Reaction–Diffusion Systems with Quadratic Nonlinearity and Delays: New Exact Solutions in Elementary Functions”, Mathematics, 10:9 (2022), 1529
Andrei D. Polyanin, Vsevolod G. Sorokin, “Reductions and exact solutions of Lotka–Volterra and more complex reaction–diffusion systems with delays”, Applied Mathematics Letters, 125 (2022), 107731
Alexander V. Aksenov, Andrei D. Polyanin, “Methods for Constructing Complex Solutions of Nonlinear PDEs Using Simpler Solutions”, Mathematics, 9:4 (2021), 345
Raseelo J. Moitsheki, Basetsana P. Ntsime, “Potential symmetry reduction of a convection-dispersion equation with spatial dependent water velocity”, Quaestiones Mathematicae, 44:11 (2021), 1493
Andrei D. Polyanin, Vsevolod G. Sorokin, “Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy”, Mathematics, 9:5 (2021), 511
S. Reza Hejazi, Elaheh Saberi, Fatemeh Mohammadizadeh, “Anisotropic non-linear time-fractional diffusion equation with a source term: Classification via Lie point symmetries, analytic solutions and numerical simulation”, Applied Mathematics and Computation, 391 (2021), 125652
Salvador Chulián, Álvaro Martinez-Rubio, María Luz Gandarias, María Rosa, “Lie point symmetries for generalised Fisher's equations describing tumour dynamics”, MBE, 18:4 (2021), 3291
Andrei D. Polyanin, Vsevolod G. Sorokin, “Construction of exact solutions to nonlinear PDEs with delay using solutions of simpler PDEs without delay”, Communications in Nonlinear Science and Numerical Simulation, 95 (2021), 105634
Olena O. Vaneeva, Alexander Bihlo, Roman O. Popovych, “Generalization of the algebraic method of group classification with application to nonlinear wave and elliptic equations”, Communications in Nonlinear Science and Numerical Simulation, 91 (2020), 105419
Andrei D. Polyanin, “Functional Separation of Variables in Nonlinear PDEs: General Approach, New Solutions of Diffusion-Type Equations”, Mathematics, 8:1 (2020), 90
Andrei D. Polyanin, Alexei I. Zhurov, “Separation of variables in PDEs using nonlinear transformations: Applications to reaction–diffusion type equations”, Applied Mathematics Letters, 100 (2020), 106055
Alexei I. Zhurov, Andrei D. Polyanin, “Symmetry reductions and new functional separable solutions of nonlinear Klein–Gordon and telegraph type equations”, JNMP, 27:2 (2020), 227
Stanislav Opanasenko, Vyacheslav Boyko, Roman O. Popovych, “Enhanced group classification of nonlinear diffusion–reaction equations with gradient-dependent diffusivity”, Journal of Mathematical Analysis and Applications, 484:1 (2020), 123739
Benjamin Maldon, Ngamta Thamwattana, Maureen Edwards, “Exploring Nonlinear Diffusion Equations for Modelling Dye-Sensitized Solar Cells”, Entropy, 22:2 (2020), 248
Andrei D. Polyanin, “Functional separable solutions of nonlinear reaction–diffusion equations with variable coefficients”, Applied Mathematics and Computation, 347 (2019), 282