Аннотация:
В работе рассматривается комбинированный метод моделирования упругопластических тел, призванный объединить преимущества двух методов: сглаженных частиц и сеточно-характеристического. Для численного моделирования упругопластических сред уже долгое время применяются различные сеточные методы, в том числе сеточно-характеристический метод. Данный метод позволяет моделировать волновые процессы в упругих средах, в том числе и упругие удары, причем в этом случае преимущество имеет использование подвижной тетраэдральной сетки. Кроме того, использование различных критериев разрушений позволяет моделировать процессы разрушения, что, однако, является технически сложным и снижает точность из-за необходимости регулярного перестроения расчетной сетки. Для моделирования процессов, сопровождающихся значительными разрушениями и деформациями, лучше подходит метод сглаженных частиц, являющийся бессеточным методом. Тем не менее, этот метод не лишен недостатков: для метода характерны нефизичные осцилляции, а моделирование колебаний требует измельчения частиц. Таким образом, имеется два семейства методов, являющихся оптимальными для двух разных групп задач. Однако реальная задача часто может оказаться смешанной, что потребует идти на существенный компромисс при выборе численного метода. С целью решения таких задач разрабатывается комбинированный численный метод GCM-SPH, объединяющий преимущества и частично устраняющий недостатки двух базовых методов. Библ. 32. Фиг. 16.
Ключевые слова:
сеточно-характеристический метод, метод сглаженных частиц, численное моделирование, неструктурированные сетки, комбинированный метод, высокопроизводительные вычислительные системы, пространственные динамические задачи.
Образец цитирования:
А. В. Васюков, А. С. Ермаков, И. Б. Петров, А. П. Потапов, А. В. Фаворская, А. В. Шевцов, “Сеточно-характеристический комбинированный метод для численного решения динамических пространственных упругопластических задач”, Ж. вычисл. матем. и матем. физ., 54:7 (2014), 1203–1217; Comput. Math. Math. Phys., 54:7 (2014), 1176–1189
Д. С. Бойков, О. Г. Ольховская, В. А. Гасилов, “Моделирование газодинамических и упругопластических явлений при интенсивном энерговкладе в твердый материал”, Матем. моделирование, 33:12 (2021), 82–102; D. S. Boykov, O. G. Olkhovskaya, V. A. Gasilov, “Coupled simulation of gasdynamic and elastoplastic phenomena in a material under the action of an intensive energy flux”, Math. Models Comput. Simul., 14:4 (2022), 599–612
В. А. Гасилов, А. С. Грушин, А. С. Ермаков, О. Г. Ольховская, И. Б. Петров, “Моделирование разрушения полимерных материалов под действием интенсивных потоков энергии”, Матем. моделирование, 30:7 (2018), 61–78; V. A. Gasilov, A. S. Grushin, A. S. Ermakov, O. G. Olkhovskaya, I. B. Petrov, “Modelling of the destruction of polymers under high energy impact”, Math. Models Comput. Simul., 11:2 (2019), 198–208
A. V. Favorskaya, I. B. Petrov, “Theory and practice of wave processes modelling”, Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, Smart Innovation Systems and Technologies, 90, eds. A. Favorskaya, I. Petrov, Springer-Verlag, Berlin, 2018, 1–6
A. V. Favorskaya, I. B. Petrov, “Grid-characteristic method”, Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, Smart Innovation Systems and Technologies, 90, eds. A. Favorskaya, I. Petrov, Springer-Verlag, Berlin, 2018, 117–160
М. А. Зайцев, С. А. Карабасов, “Схема Кабаре для численного решения задач деформирования упругопластических тел”, Матем. моделирование, 29:11 (2017), 53–70
Yu. V. Vassilevski, K. A. Beklemysheva, G. K. Grigoriev, A. O. Kazakov, N. S. Kulberg, I. B. Petrov, V. Yu. Salamatova, A. V. Vasyukov, “Transcranial ultrasound of cerebral vessels in silico: proof of concept”, Russ. J. Numer. Anal. Math. Model, 31:5 (2016), 317–328
I. Petrov, “Computational problems in arctic research”, International Conference on Computer Simulation in Physics and Beyond 2015, Journal of Physics Conference Series, 681, IOP Publishing Ltd, 2016, 012026
K. A. Beklemysheva, A. A. Danilov, I. B. Petrov, V. Yu. Salamatova, Yu. V. Vassilevski, A. V. Vasyukov, “Virtual blunt injury of human thorax: age-dependent response of vascular system”, Russ. J. Numer. Anal. Math. Model, 30:5 (2015), 259–268
I. B. Petrov, A. V. Favorskaya, A. V. Shevtsov, A. V. Vasyukov, A. P. Potapov, A. S. Ermakov, “Combined method for the numerical solution of dynamic three-dimensional elastoplastic problems”, Dokl. Math., 91:1 (2015), 111–113