Loading [MathJax]/jax/output/CommonHTML/jax.js
Записки научных семинаров ПОМИ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Зап. научн. сем. ПОМИ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Записки научных семинаров ПОМИ, 1997, том 249, страницы 294–302 (Mi znsl590)  

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Об оценке максимума модуля решения стационарной задачи для уравнений Навье–Стокса

В. А. Солонников

Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
Аннотация: Доказано, что решение нелинейной стационарной задачи для уравнений Навье–Стокса в ограниченной области ΩR3 с краевым условием v|Ω=a(x) удовлетворяет неравенству
supxΩ|v(x)|c(supxΩ|a(x)|)
при любых числах Рейнольдса. Библ. – 8 назв.
Поступило: 12.04.1997
Англоязычная версия:
Journal of Mathematical Sciences (New York), 2000, Volume 101, Issue 5, Pages 3563–3569
DOI: https://doi.org/10.1007/BF02680152
Реферативные базы данных:
УДК: 517.9
Образец цитирования: В. А. Солонников, “Об оценке максимума модуля решения стационарной задачи для уравнений Навье–Стокса”, Краевые задачи математической физики и смежные вопросы теории функций. 29, Зап. научн. сем. ПОМИ, 249, ПОМИ, СПб., 1997, 294–302; J. Math. Sci. (New York), 101:5 (2000), 3563–3569
Цитирование в формате AMSBIB
\RBibitem{Sol97}
\by В.~А.~Солонников
\paper Об оценке максимума модуля решения стационарной задачи для уравнений Навье--Стокса
\inbook Краевые задачи математической физики и смежные вопросы теории функций.~29
\serial Зап. научн. сем. ПОМИ
\yr 1997
\vol 249
\pages 294--302
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl590}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1698523}
\zmath{https://zbmath.org/?q=an:0961.35114}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 101
\issue 5
\pages 3563--3569
\crossref{https://doi.org/10.1007/BF02680152}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/znsl590
  • https://www.mathnet.ru/rus/znsl/v249/p294
  • Эта публикация цитируется в следующих 3 статьяx:
    1. Russo R., “On Stokes' Problem”, Advances in Mathematical Fluid Mechanics - Dedicated to Giovanni Paolo Galdi on the Occasion of His 60th Birthday, International Conference on Mathematical Fluid Mechanics, 2007, 2010, 473–511  mathscinet  zmath  isi
    2. Maz'ya V., Rossmann J., “A maximum modulus estimate for solutions of the Navier–Stokes system in domains of polyhedral type”, Mathematische Nachrichten, 282:3 (2009), 459–469  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Maremonti P., Russo R., Starita G., “Classical solutions to the stationary Navier–Stokes system in exterior domains”, Navier-Stokes Equations: Theory and Numerical Methods, Lecture Notes in Pure and Applied Mathematics, 223, 2002, 53–64  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Статистика просмотров:
    Страница аннотации:232
    PDF полного текста:86
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025