Аннотация:
We study the asymptotic behavior of the number of maximal trees in a uniform attachment model. In our model, we consider a sequence of graphs built by the following recursive rule. We start with the complete graph on m+1 vertices, m>1. Then on the n+1 step, we add vertex n+1 and draw m edges from it to different vertices, chosen uniformly from 1,…,n. We prove the convergence speed for the number of maximal trees in such a model using the stochastic approximation technique.
Ключевые слова:
random graphs, uniform attachment, stochastic approximation.
Образец цитирования:
Ю. А. Малышкин, “Number of maximal rooted trees in uniform attachment model via stochastic approximation”, Вестник ТвГУ. Серия: Прикладная математика, 2022, no. 3, 27–34
\RBibitem{Mal22}
\by Ю.~А.~Малышкин
\paper Number of maximal rooted trees in uniform attachment model via stochastic approximation
\jour Вестник ТвГУ. Серия: Прикладная математика
\yr 2022
\issue 3
\pages 27--34
\mathnet{http://mi.mathnet.ru/vtpmk640}
\crossref{https://doi.org/10.26456/vtpmk640}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4472908}
\elib{https://elibrary.ru/item.asp?id=49842365}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vtpmk640
https://www.mathnet.ru/rus/vtpmk/y2022/i3/p27
Эта публикация цитируется в следующих 1 статьяx:
Yu. A. Malyshkin, “Number of maximal rooted trees in preferential attachment model via stochastic approximation”, Вестник ТвГУ. Серия: Прикладная математика, 2023, № 2, 28–36