Loading [MathJax]/jax/output/CommonHTML/jax.js
Вестник Тверского государственного университета. Серия: Прикладная математика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Вестник ТвГУ. Серия: Прикладная математика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Вестник Тверского государственного университета. Серия: Прикладная математика, 2022, выпуск 2, страницы 74–83
DOI: https://doi.org/10.26456/vtpmk639
(Mi vtpmk639)
 

Системный анализ, управление и обработка информации

Решение обратных оптимизационных задач для нейросетевых интеллектуальных моделей на основе эпсилон-липшицевых методов

С. В. Новикова, П. А. Чернышевский

КНИТУ КАИ имени А.Н. Туполева, г. Казань
Список литературы:
Аннотация: Использование методов интеллектуального анализа не всегда позволяет ответить на все вопросы, которые могут быть сформулированы в рамках рассматриваемой математической модели. В данной работе показано, как некоторые из таких запросов могут быть представлены в виде задачи глобальной оптимизации непрерывной нейросетевой функции. Нахождение глобального минимума функции, заданной нейросетевой моделью, в некоторых случаях затрудняется сложностью доказательства ее липшицевости и вычисления константы Липшица, поскольку наличие непрерывности не гарантирует в общем случае выполнение неравенства Липшица. В свою очередь, это затрудняет применение классических подходов. В данной работе предложено использовать для приближенного нахождения минимума модифицированные методы на основе использования понятия ε-липшицевости, так как для их работы требуется лишь свойство непрерывности. В качестве примера рассмотрена нейросетевая модель расчета концентрации металлов в биосредах населения в зависимости от их содержания в питьевой воде, составлена соответствующая оптимизационная задача и приведены результаты её численного решения с помощью обобщенного метода Стронгина.
Ключевые слова: нейросетевое моделирование, интеллектуальный анализ, непрерывная функция, глобальная оптимизация, обобщенный метод Стронгина.
Поступила в редакцию: 30.03.2022
Исправленный вариант: 05.05.2022
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.677
Образец цитирования: С. В. Новикова, П. А. Чернышевский, “Решение обратных оптимизационных задач для нейросетевых интеллектуальных моделей на основе эпсилон-липшицевых методов”, Вестник ТвГУ. Серия: Прикладная математика, 2022, № 2, 74–83
Цитирование в формате AMSBIB
\RBibitem{NovChe22}
\by С.~В.~Новикова, П.~А.~Чернышевский
\paper Решение обратных оптимизационных задач для нейросетевых интеллектуальных моделей на основе эпсилон-липшицевых методов
\jour Вестник ТвГУ. Серия: Прикладная математика
\yr 2022
\issue 2
\pages 74--83
\mathnet{http://mi.mathnet.ru/vtpmk639}
\crossref{https://doi.org/10.26456/vtpmk639}
\elib{https://elibrary.ru/item.asp?id=49249010}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/vtpmk639
  • https://www.mathnet.ru/rus/vtpmk/y2022/i2/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Тверского государственного университета. Серия: Прикладная математика
    Статистика просмотров:
    Страница аннотации:165
    PDF полного текста:89
    Список литературы:39
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025