Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Approximation of differentiation operators by bounded linear operators in lebesgue spaces on the axis and related problems in the spaces of (p,q)(p,q)-multipliers and their predual spaces
Аннотация:
We consider a variant En,k(N;r,r;p,p)En,k(N;r,r;p,p) of the four-parameter Stechkin problem En,k(N;r,s;p,q)En,k(N;r,s;p,q) on the best approximation of differentiation operators of order kk on the class of nn times differentiable functions (0<k<n)(0<k<n) in Lebesgue spaces on the real axis. We discuss the state of research in this problem and related problems in the spaces of multipliers of Lebesgue spaces and their predual spaces. We give two-sided estimates for En,k(N;r,r;p,p)En,k(N;r,r;p,p). The paper is based on the author's talk at the S.B.Stechkin's International Workshop-Conference on Function Theory (Kyshtym, Chelyabinsk region, August 1–10, 2023).
Ключевые слова:
differentiation operator, Stechkin's problem, Kolmogorov inequality, (p,q)(p,q)-multiplier, predual space for the space of (p,q)(p,q)-multipliers.
Образец цитирования:
Vitalii V. Arestov, “Approximation of differentiation operators by bounded linear operators in lebesgue spaces on the axis and related problems in the spaces of (p,q)(p,q)-multipliers and their predual spaces”, Ural Math. J., 9:2 (2023), 4–27
\RBibitem{Are23}
\by Vitalii~V.~Arestov
\paper Approximation of differentiation operators by bounded linear operators in lebesgue spaces on the axis and related problems in the spaces of $(p,q)$-multipliers and their predual spaces
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 2
\pages 4--27
\mathnet{http://mi.mathnet.ru/umj200}
\crossref{https://doi.org/10.15826/umj.2023.2.001}
\elib{https://elibrary.ru/item.asp?id=59690638}
\edn{https://elibrary.ru/BBOEIW}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj200
https://www.mathnet.ru/rus/umj/v9/i2/p4
Эта публикация цитируется в следующих 2 статьяx:
В. В. Арестов, “Вариант задачи Стечкина о наилучшем приближении оператора дифференцирования дробного порядка на оси”, Тр. ИММ УрО РАН, 30, № 4, 2024, 37–54
V. V. Arestov, “A Variant of Stechkin's Problem on the Best Approximation of a Fractional Order Differentiation Operator on the Axis”, Proc. Steklov Inst. Math., 327:S1 (2024), S10