Аннотация:
We develop the first fixed-ratio approximation algorithm for the well-known Prize-Collecting Asymmetric Traveling Salesman Problem, which has numerous valuable applications in operations research. An instance of this problem is given by a complete node- and edge-weighted digraph GG. Each node of the graph GG can either be visited by the resulting route or skipped, for some penalty, while the arcs of GG are weighted by non-negative transportation costs that fulfill the triangle inequality constraint. The goal is to find a closed walk that minimizes the total transportation costs augmented by the accumulated penalties. We show that an arbitrary αα-approximation algorithm for the Asymmetric Traveling Salesman Problem induces an (α+1)(α+1)-approximation for the problem in question. In particular, using the recent (22+ε)(22+ε)-approximation algorithm of V. Traub and J. Vygen that improves the seminal result of O. Svensson, J. Tarnavski, and L. Végh, we obtain (23+ε)(23+ε)-approximate solutions for the problem.
\RBibitem{RyzNezKha23}
\by Ksenia~~Ryzhenko, Katherine~~Neznakhina, Michael~~Khachay
\paper Fixed ratio polynomial time approximation algorithm for the Prize-Collecting Asymmetric Traveling Salesman Problem
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 1
\pages 135--146
\mathnet{http://mi.mathnet.ru/umj194}
\crossref{https://doi.org/10.15826/umj.2023.1.012}
\elib{https://elibrary.ru/item.asp?id=54265312}
\edn{https://elibrary.ru/SGTRNC}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj194
https://www.mathnet.ru/rus/umj/v9/i1/p135
Эта публикация цитируется в следующих 4 статьяx:
Ksenia Rizhenko, “Improved first player strategy for the zero-sum sequential uncrossing game”, Ural Math. J., 10:1 (2024), 136–146
Daniil Khachai, Katherine Neznakhina, Ksenia Rizhenko, Michael Khachay, “Fixed-Ratio Approximation Algorithm for the Minimum Cost Cover of a Digraph by Bounded Number of Cycles”, WSEAS TRANSACTIONS ON COMPUTERS, 23 (2024), 218
М. Ю. Хачай, Е. Д. Незнахина, К. В. Рыженко, “Полиномиальная аппроксимируемость асимметричной задачи о покрытии графа ограниченным числом циклов”, Тр. ИММ УрО РАН, 29, № 3, 2023, 261–273; M. Yu. Khachay, E. D. Neznakhina, K. V. Ryzhenko, “Polynomial-Time Approximability of the Asymmetric Problem of Covering a Graph by a Bounded Number of Cycles”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S121–S132
Е. Д. Незнахина, Ю. Ю. Огородников, К. В. Рыженко, М. Ю. Хачай, “Приближенные алгоритмы с фиксированными оценками точности для серии асимметричных задач маршрутизации”, Докл. РАН. Матем., информ., проц. упр., 514:1 (2023), 89–97; E. D. Neznakhina, Yu. Yu. Ogorodnikov, K. V. Ryzhenko, M. Yu. Khachay, “Approximation algorithms with constant factors for a series of asymmetric routing problems”, Dokl. Math., 108:3 (2023), 499–505