Образец цитирования:
В. Ф. Турчин, “К вычислению многомерных интегралов по методу Монте-Карло”, Теория вероятн. и ее примен., 16:4 (1971), 738–743; Theory Probab. Appl., 16:4 (1971), 720–724
\RBibitem{Tur71}
\by В.~Ф.~Турчин
\paper К~вычислению многомерных интегралов по методу Монте-Карло
\jour Теория вероятн. и ее примен.
\yr 1971
\vol 16
\issue 4
\pages 738--743
\mathnet{http://mi.mathnet.ru/tvp2337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=292259}
\zmath{https://zbmath.org/?q=an:0257.65030}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 4
\pages 720--724
\crossref{https://doi.org/10.1137/1116083}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tvp2337
https://www.mathnet.ru/rus/tvp/v16/i4/p738
Эта публикация цитируется в следующих 47 статьяx:
E. N. Gryazina, D. Y. Baluev, “Investigation of Feasible and Marginal Operating Regimes of Electric Power Systems”, ARC, 85:5 (2024), 532
Е. Н. Грязина, Д. Ю. Балуев, “Исследование допустимых и предельных режимов работы энергетических систем”, Автомат. и телемех., 2024, № 5, 112–128
Sarah Casura, Dragana Ilić, Jonathan Targaczewski, Nemanja Rakić, Jochen Liske, “Exploring mass measurements of supermassive black holes in AGN using GAMA photometry and spectroscopy”, Monthly Notices of the Royal Astronomical Society, 534:1 (2024), 182
E. N. Gryazina, D. Y. Baluev, “Investigation of Feasible and Marginal Operating Regimes of Electric Power Systems”, Autom Remote Control, 85:5 (2024), 461
Johannes Buchner, “Nested sampling methods”, Statist. Surv., 17:none (2023)
Ruriko Yoshida, Keiji Miura, David Barnhill, “Hit and run sampling from tropically convex sets”, Alg. Stat., 14:1 (2023), 37
E. Merlin, M. Castellano, H. Bretonnière, M. Huertas-Company, U. Kuchner, D. Tuccillo, F. Buitrago, J. R. Peterson, C. J. Conselice, F. Caro, P. Dimauro, L. Nemani, A. Fontana, M. Kümmel, B. Häußler, W. G. Hartley, A. Alvarez Ayllon, E. Bertin, P. Dubath, F. Ferrari, L. Ferreira, R. Gavazzi, D. Hernández-Lang, G. Lucatelli, A. S. G. Robotham, M. Schefer, C. Tortora, N. Aghanim, A. Amara, L. Amendola, N. Auricchio, M. Baldi, R. Bender, C. Bodendorf, E. Branchini, M. Brescia, S. Camera, V. Capobianco, C. Carbone, J. Carretero, F. J. Castander, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, M. Cropper, A. Da Silva, H. Degaudenzi, J. Dinis, M. Douspis, F. Dubath, C. A. J. Duncan, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, P. Franzetti, S. Galeotta, B. Garilli, B. Gillis, C. Giocoli, A. Grazian, F. Grupp, S. V. H. Haugan, H. Hoekstra, W. Holmes, F. Hormuth, A. Hornstrup, P. Hudelot,, “Euclid preparation”, A&A, 671 (2023), A101
Johannes Buchner, MaxEnt 2022, 2023, 46
Aditi Laddha, Santosh S. Vempala, “Convergence of Gibbs Sampling: Coordinate Hit-and-Run Mixes Fast”, Discrete Comput Geom, 70:2 (2023), 406
Pavel Shcherbakov, Mingyue Ding, Ming Yuchi, “Random Sampling Many-Dimensional Sets Arising in Control”, Mathematics, 9:5 (2021), 580
Octavio Perez-Gomez Gaona, Vanessa Vazquez-Cardona, David Gonzalez-Gonzalez, Rolando Praga-Alejo, “Reliability modeling based on Maximum Entropy and non-central moments as an alternative for RCM schemes or replaceable systems”, JIO, 2021, 1
Oren Mangoubi, Natesh Pillai, Aaron Smith, “Simple conditions for metastability of continuous Markov chains”, J. Appl. Probab., 58:1 (2021), 83
Shirin Fallahi, Hans J. Skaug, Guttorm Alendal, Inés P. Mariño, “A comparison of Monte Carlo sampling methods for metabolic network models”, PLoS ONE, 15:7 (2020), e0235393
B. Polyak, P. Shcherbakov, Systems & Control: Foundations & Applications, Uncertainty in Complex Networked Systems, 2018, 181
Robbert L. Harms, Alard Roebroeck, “Robust and Fast Markov Chain Monte Carlo Sampling of Diffusion MRI Microstructure Models”, Front. Neuroinform., 12 (2018)
Georgios Karagiannis, Guang Lin, “On the Bayesian calibration of computer model mixtures through experimental data, and the design of predictive models”, Journal of Computational Physics, 342 (2017), 139
Alfredo Braunstein, Anna Paola Muntoni, Andrea Pagnani, “An analytic approximation of the feasible space of metabolic networks”, Nat Commun, 8:1 (2017)
Daniele De Martino, “Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics”, Phys. Rev. E, 95:6 (2017)
D. De Martino, “The dual of the space of interactions in neural network models”, Int. J. Mod. Phys. C, 27:06 (2016), 1650067
D De Martino, “Genome-scale estimate of the metabolic turnover ofE. Colifrom the energy balance analysis”, Phys. Biol., 13:1 (2016), 016003