Аннотация:
Если $(X, Y)$ есть наблюдение случайного вектора с функцией распределения $F(x-\theta,y)$, $\sigma^2=DX$, $\rho=\textrm{corr}(X,Y)$ и $I$ — информация Фишера о параметре $\theta$ в $(X,Y)$, то $I\ge\{\sigma^2(1-\rho^2)\}^{-1}$.
Равенство достигается при выполнении условий, тесно связанных с условиями линейности оценки Питмэна для $\theta$ по выборке из совокупности $F(x-\theta,y)$. Эти утвержения обобщают результаты, полученные ранее для случая, когда наблюдается только компонента $X$.
Ключевые слова:
информация Фишера, оценка Питмэна.
Образец цитирования:
A. M. Kagan, C. R. Rao, “On estimation of a location parameter in presence of an ancillary component”, Теория вероятн. и ее примен., 50:1 (2005), 172–176; Theory Probab. Appl., 50:1 (2006), 129–133