Аннотация:
Построены решения уравнения Кадомцева–Петвиашвили I в терминах определителей Фредгольма. Получены решения в виде отношения вронскианов порядка $2N$. Такие решения, называемые решениями порядка $N$, зависят от $2N-1$ параметров. Их также можно представить в виде отношения двух полиномов степени $2N(N+1)$ по $x$, $y$ и $t$, зависящих от $2N-2$ параметров. Максимум модуля этих решений порядка $N$ равен $2(2N+1)^{2}$. Построены явные выражения до шестого порядка и изучены структуры их модулей на плоскости $(x,y)$, а также их динамика в зависимости от времени и параметров.
Образец цитирования:
П. Гайар, “Многопараметрические семейства решений уравнения Кадомцева–Петвиашвили I, структура их рациональных представлений и совокупность волн-убийц”, ТМФ, 196:2 (2018), 266–293; Theoret. and Math. Phys., 196:2 (2018), 1174–1199
\RBibitem{Gai18}
\by П.~Гайар
\paper Многопараметрические семейства решений уравнения Кадомцева--Петвиашвили~I, структура их рациональных представлений и совокупность волн-убийц
\jour ТМФ
\yr 2018
\vol 196
\issue 2
\pages 266--293
\mathnet{http://mi.mathnet.ru/tmf9435}
\crossref{https://doi.org/10.4213/tmf9435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833557}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1174G}
\elib{https://elibrary.ru/item.asp?id=35276544}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 2
\pages 1174--1199
\crossref{https://doi.org/10.1134/S0040577918080068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443722200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052685146}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tmf9435
https://doi.org/10.4213/tmf9435
https://www.mathnet.ru/rus/tmf/v196/i2/p266
Эта публикация цитируется в следующих 12 статьяx:
Bo Yang, Jianke Yang, “Concentric‐Ring Patterns of Higher‐Order Lumps in the Kadomtsev–Petviashvili I Equation”, Stud Appl Math, 154:1 (2025)
Инь-Ди Лю, Чжун-Лун Чжао, “Волны-убийцы $(2+1)$-мерного интегрируемого нелокального уравнения Шредингера с обращением пространства-времени”, ТМФ, 222:1 (2025), 41–61; Yindi Liu, Zhonglong Zhao, “Rogue waves of the $(2+1)$-dimensional integrable reverse space–time nonlocal Schrödinger equation”, Theoret. and Math. Phys., 222:1 (2025), 34–52
Pierre Gaillard, “Rogue Waves in the Nonlinear Schrödinger, Kadomtsev–Petviashvili, Lakshmanan–Porsezian–Daniel and Hirota Equations”, Axioms, 14:2 (2025), 94
S. Chakravarty, “Multi-lump solutions of KPI”, Nonlinear Dyn., 112:1 (2024), 575
Pierre Gaillard, “Rational Solutions to the KPI Equation as Multi-lumps with a One Degree of Summation”, Int. J. Appl. Comput. Math, 10:3 (2024)
Huian Lin, Liming Ling, “Large-time lump patterns of Kadomtsev-Petviashvili I equation in a plasma analyzed via vector one-constraint method”, Journal of Mathematical Physics, 65:4 (2024)
L. He, J. Zhang, Z. Zhao, “New type of multiple lumps, rogue waves and interaction solutions of the Kadomtsev-Petviashvili I equation”, Eur. Phys. J. Plus, 138:4 (2023)
S. Chakravarty, M. Zowada, “Multi-lump wave patterns of KPI via integer partitions”, Physica D: Nonlinear Phenomena, 446 (2023), 133644
S. Chakravarty, M. Zowada, “Classification of KPI lumps”, J. Phys. A: Math. Theor., 55:21 (2022), 215701
B. Yang, J. Yang, “Pattern transformation in higher-order lumps of the Kadomtsev–Petviashvili I equation”, J. Nonlinear Sci., 32:4 (2022)
P. Gaillard, “Families of solutions to the KPI equation given by an extended Darboux transformation”, Partial Differ. Equ. Appl., 3:6 (2022)
B. Yang, J. Yang, “Universal rogue wave patterns associated with the yablonskii-vorob'ev polynomial hierarchy”, Physica D, 425 (2021), 132958