Аннотация:
Соотношение неопределенностей для произведения числа частиц N и времени жизни T, где последнее рассматривается как мера того, как система сопротивляется изменениям, строго выводится для любой квантовой системы с произвольно большим N, для которой нижний край спектра имеет ненулевую ширину и ограничен снизу величиной N. Полученное неравенство можно применять при исследовании нетривиальной проблемы скорости расширения материи в балке как функции числа электронов при больших N. Решение этой задачи получено на основе наблюдения, что сопротивление увеличению скорости расширения можно определить в рамках квантовой механики в терминах времени жизни при таком увеличении. Показано, что достаточное условие ненулевого времени жизни материи при увеличении скорости расширения состоит в том, что нижний край спектра соответствует нижнему краю энергетической зоны, для которой применение полученного соотношения неопределенностей делается очевидным. Кроме того, показано, что если скорость расширения возрастает с ростом радиуса R, то при больших R время жизни убывает не быстрее, чем 1/R3. Для полноты и последовательности анализа рассмотрен также формальный предел нулевой ширины. Поскольку полученное соотношение неопределенностей является универсальным, можно ожидать, что оно будет иметь и другие приложения.
Ключевые слова:
соотношение неопределенностей, квантовые системы с произвольно большим числом частиц, скорость расширения материи в балке, время жизни при увеличении скорости расширения.
Поступило в редакцию: 08.03.2013 После доработки: 31.05.2013
Образец цитирования:
Э. Б. Манукян, “Соотношение неопределенностей для квантовых систем с произвольно большим числом частиц и скорость расширения материи в балке”, ТМФ, 178:2 (2014), 290–294; Theoret. and Math. Phys., 178:2 (2014), 253–256