Аннотация:
Релятивистские методы преобразования Фолди–Ваутхойзена типа “шаг за шагом” уже после первого шага дают выражение для оператора Гамильтона, не совпадающее с точным результатом, который определяется при помощи метода Эриксена. Согласие между методами имеет место для слагаемых нулевого и первого порядков по постоянной Планка, а для слагаемых второго и более высоких порядков такое согласие отсутствует. Проанализированы достоинства и недостатки различных методов и установлены границы их применимости.
Образец цитирования:
А. Я. Силенко, “Сравнительный анализ методов прямого и “шаг за шагом” преобразования Фолди–Ваутхойзена”, ТМФ, 176:2 (2013), 189–204; Theoret. and Math. Phys., 176:2 (2013), 987–999
Aleksandr V. Boitsov, Karen Z. Hatsagortsyan, Christoph H. Keitel, “Scaling method for the numerical solution of the strong-field ionization problem in the relativistic regime”, Computer Physics Communications, 2025, 109511
Alexander J. Silenko, “Leading correction to the relativistic Foldy-Wouthuysen Hamiltonian”, Phys. Rev. A, 111:3 (2025)
John French, “Relativistic Corrections to the Quantization of a Classical Spinning Particle with Constant Electric and Magnetic Fields”, Found Phys, 55:2 (2025)
R. R. S. Oliveira, “Relativistic and nonrelativistic Landau levels for the noncommutative quantum Hall effect with anomalous magnetic moment in a conical Gödel-type spacetime”, Gen Relativ Gravit, 56:2 (2024)
Bruno Gonçalves, Mário M. Dias Júnior, Larissa F. Eleotério, “Exact Foldy–Wouthuysen transformation for a Dirac equation describing the interaction of spin-1/2 relativistic particles with an external electromagnetic field”, Int. J. Mod. Phys. A, 38:33n34 (2023)
Mondal R., Oppeneer P.M., “Dynamics of the Relativistic Electron Spin in An Electromagnetic Field”, J. Phys.-Condes. Matter, 32:45 (2020), 455802
Zou L., Zhang P., Silenko A.J., “Paraxial Wave Function and Gouy Phase For a Relativistic Electron in a Uniform Magnetic Field”, J. Phys. G-Nucl. Part. Phys., 47:5 (2020), 055003
Zou L., Zhang P., Silenko A.J., “Position and Spin in Relativistic Quantum Mechanics”, Phys. Rev. A, 101:3 (2020), 032117
Silenko A.J., Zhang P., Zou L., Xviii Workshop on High Energy Spin Physics, Dspin-2019, Journal of Physics Conference Series, 1435, IOP Publishing Ltd, 2020
Silenko A.J., Zhang P., Zou L., “Comment on “Relativistic Quantum Dynamics of Twisted Electron Beams in Arbitrary Electric and Magnetic Fields” Reply”, Phys. Rev. Lett., 122:15 (2019), 159302
Goncalves B., Dias Junior M.M., Ribeiro B.J., “Exact Foldy-Wouthuysen Transformation For a Dirac Theory Revisited”, Phys. Rev. D, 99:9 (2019), 096015
Silenko A.J., Zhang P., Zou L., Xxiv International Baldin Seminar on High Energy Physics Problems: Relativistic Nuclear Physics and Quantum Chromodynamics (Baldin Ishepp Xxiv), Epj Web of Conferences, 204, eds. Bondarenko S., Burov V., Malakhov A., E D P Sciences, 2019
Lan B.L., Chu R.J., “Disagreement Between Non-Relativistic and Relativistic Quantum Dynamics of a Driven Electron”, Results Phys., 15 (2019), 102654
Silenko A.J. Zhang P. Zou L., “Relativistic Quantum-Mechanical Description of Twisted Paraxial Electron and Photon Beams”, Phys. Rev. A, 100:3 (2019), 030101
R. Mondal, M. Berritta, P. M. Oppeneer, “Generalisation of Gilbert damping and magnetic inertia parameter as a series of higher-order relativistic terms”, J. Phys.-Condes. Matter, 30:26 (2018), 265801
V. P. Neznamov, V. E. Shemarulin, “Analysis of half-spin particle motion in Kerr-Newman field by means of effective potentials in second-order equations”, Gravit. Cosmol., 24:2 (2018), 129–138
A. J. Silenko, P. Zhang, L. Zou, “Relativistic quantum dynamics of twisted electron beams in arbitrary electric and magnetic fields”, Phys. Rev. Lett., 121:4 (2018), 043202
A. J. Silenko, “Relativistic quantum mechanics of a Proca particle in Riemannian spacetimes”, Phys. Rev. D, 98:2 (2018), 025014, 12 pp.
A. J. Silenko, “Proca particle in Riemannian spacetimes”, Phys. Part. Nuclei, 49:5 (2018), 932–935
A. J. Silenko, “Electromagnetic and gravitational interactions of a Proca particle”, Nonlinear Phenom. Complex Syst., 21:4, SI (2018), 335–342