Аннотация:
Построены общее и N-солитонное решения интегродифференциального уравнения Шредингера с нелокальной нелинейностью. Рассматриваются интегрируемые нелинейные интегродифференциальные уравнения на многообразии произвольной связной унимодулярной группы Ли. Для редукции уравнений на группе к уравнениям с меньшим числом независимых переменных применяется метод орбит коприсоединенного представления и построенный на его основе обобщенный гармонический анализ. Возможности изложенного алгоритма демонстрируются на примере группы SO(3).
Образец цитирования:
М. М. Гончаровский, И. В. Широков, “Интегрируемый класс дифференциальных уравнений с нелокальной нелинейностью на группах Ли”, ТМФ, 161:3 (2009), 332–345; Theoret. and Math. Phys., 161:3 (2009), 1604–1615
А. И. Бреев, А. В. Шаповалов, А. В. Козлов, “Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX”, Компьютерные исследования и моделирование, 8:3 (2016), 433–443
A I Breev, A V Shapovalov, “The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration”, J. Phys.: Conf. Ser., 670 (2016), 012015
Alexey A. Magazev, Vitaly V. Mikheyev, Igor V. Shirokov, “Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras”, SIGMA, 11 (2015), 066, 17 pp.
Breev A.I., “Schrodinger Equation With Convolution Nonlinearity on Lie Groups and Commutative Homogeneous Spaces”, Russ. Phys. J., 57:8 (2014), 1050–1058
Breev A.I., Goncharovskii M.M., Shirokov I.V., “Klein-Gordon Equation with a Special Type of Nonlocal Nonlinearity in Commutative Homogeneous Spaces with Invariant Metric”, Russ. Phys. J., 56:7 (2013), 731–739
А. А. Магазев, “Интегрирование уравнения Клейна–Гордона–Фока во внешнем электромагнитном поле на группах Ли”, ТМФ, 173:3 (2012), 375–391; A. A. Magazev, “Integrating Klein–Gordon–Fock equations in an external electromagnetic field on Lie groups”, Theoret. and Math. Phys., 173:3 (2012), 1654–1667