Аннотация:
В пространстве L2(Rn)L2(Rn) рассматривается оператор энергии вида
Hq=−12mΔ+q(x)Hq=−12mΔ+q(x)
с функцией q(x)q(x), убывающей при |x|→∞|x|→∞ как
|x|−α|x|−α, α>0α>0. Строится явный “регуляризирующий” оператор Uq(t)Uq(t) и доказывается существование обобщенных волновых операторов
W±(Hq,H0)=s-limt→±∞exp{−itHq}exp{itH0}Uq(t).W±(Hq,H0)=s-limt→±∞exp{−itHq}exp{itH0}Uq(t).
Образец цитирования:
В. С. Буслаев, В. Б. Матвеев, “Волновые операторы для уравнения Шредингера с медленно убывающим потенциалом”, ТМФ, 2:3 (1970), 367–376; Theoret. and Math. Phys., 2:3 (1970), 266–274
V. P. Smyshlyaev, I. V. Kamotski, “Searchlight asymptotics for high-frequency scattering by boundary inflection”, Алгебра и анализ, 33:2 (2021), 275–297; St. Petersburg Math. J., 33:2 (2022), 387–403
Kyohei Itakura, “Stationary scattering theory for repulsive Hamiltonians”, Journal of Mathematical Physics, 62:6 (2021)
W. N. Polyzou, Ekaterina Nathanson, “Scattering using real-time path integrals”, Phys. Rev. C, 101:6 (2020)
Sakhnovich L., “The Deviation Factor and Divergences in Quantum Electrodynamics, Concrete Examples”, Phys. Lett. A, 383:24 (2019), 2846–2853
D. R. Yafaev, “A note on the Schrödinger operator with a long-range potential”, Lett Math Phys, 109:12 (2019), 2625
Sakhnovich L., “The Generalized Scattering Problems: Ergodic Type Theorems”, Complex Anal. Oper. Theory, 12:3 (2018), 767–776
Lev Sakhnovich, Operator Theory: Advances and Applications, 263, Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations, 2018, 407
Л. А. Тахтаджян, А. Ю. Алексеев, И. Я. Арефьева, М. А. Семенов-Тян-Шанский, Е. К. Склянин, Ф. А. Смирнов, С. Л. Шаташвили, “Научное наследие Л. Д. Фаддеева. Обзор работ”, УМН, 72:6(438) (2017), 3–112; L. A. Takhtajan, A. Yu. Alekseev, I. Ya. Aref'eva, M. A. Semenov-Tian-Shansky, E. K. Sklyanin, F. A. Smirnov, S. L. Shatashvili, “Scientific heritage of L. D. Faddeev. Survey of papers”, Russian Math. Surveys, 72:6 (2017), 977–1081
Monographs and Research Notes in Mathematics, Spectral and Scattering Theory for Second-Order Partial Differential Operators, 2017, 219
Lev Sakhnovich, “Stationary and dynamical scattering problems and ergodic-type theorems”, Physics Letters A, 381:36 (2017), 3021
Sergey Simonov, “Zeroes of the spectral density of the Schrödinger operator with the slowly decaying Wigner–von Neumann potential”, Math. Z., 284:1-2 (2016), 335
В. М. Бабич, А. М. Будылин, Л. А. Дмитриева, А. И. Комеч, С. Б. Левин, М. В. Перель, Е. А. Рыбакина, В. В. Суханов, А. А. Федотов, “О математическом творчестве Владимира Савельевича Буслаева”, Алгебра и анализ, 25:2 (2013), 3–36; V. M. Babich, A. M. Budylin, L. A. Dmitrieva, A. I. Komech, S. B. Levin, M. V. Perel', E. A. Rybakina, V. V. Sukhanov, A. A. Fedotov, “On the mathematical work of Vladimir Savel'evich Buslaev”, St. Petersburg Math. J., 25:2 (2014), 151–174
Shinichiro Itozaki, “Existence of Wave Operators with Time-Dependent Modifiers for the Schrödinger Equations with Long-Range Potentials on Scattering Manifolds”, Ann. Henri Poincaré, 14:4 (2013), 709
SERGUEI NABOKO, SERGEY SIMONOV, “Zeroes of the spectral density of the periodic Schrödinger operator with Wigner–von Neumann potential”, Math. Proc. Camb. Phil. Soc., 153:1 (2012), 33
Sergei Avdonin, Victor Mikhaylov, Alexei Rybkin, “The Boundary Control Approach to the Titchmarsh-Weyl m–Function. I. The Response Operator and the A–Amplitude”, Commun. Math. Phys., 275:3 (2007), 791
Alexei Rybkin, Spectral Methods for Operators of Mathematical Physics, 2004, 185
V.B. Matveev, Scattering, 2002, 1648
Horst Behncke, Don Hinton, Christian Remling, “The Spectrum of Differential Operators of Order 2n with Almost Constant Coefficients”, Journal of Differential Equations, 175:1 (2001), 130