Аннотация:
Используя доказанную ранее конформную инвариантность функций Грина полей в модели Гросса–Нэве в критическом режиме [1], мы вычисляем методом конформного бутстрапа в произвольной размерности пространства d критическую размерность основного поля (индекс \ifmmode \eta \else η\fi ) в порядке 1/n3, а вспомогательного – в порядке 1/n2, т. е. с повышением на порядок по сравнению с известными ранее результатами.
Образец цитирования:
А. Н. Васильев, С. Э. Деркачев, Н. А. Кивель, А. С. Степаненко, “1/n-Разложение в модели Гросса–Нэве: расчет индекса η в порядке 1/n3 методом конформного бутстрапа”, ТМФ, 94:2 (1993), 179–192; Theoret. and Math. Phys., 94:2 (1993), 127–136
Gordon W. Semenoff, Riley A. Stewart, “Parity-violating marginal deformation of the 3D Gross-Neveu-Thirring model”, Phys. Rev. D, 111:2 (2025)
Huanzhi Hu, Frank Krüger, “Quantum criticality of type-I and critically tilted Dirac semimetals”, Physica C: Superconductivity and its Applications, 632 (2025), 1354687
SangEun Han, Shouryya Ray, Igor F. Herbut, “Gross-Neveu-Yukawa SO(2) and SO(3) tensorial criticality”, Phys. Rev. B, 111:11 (2025)
Shiroman Prakash, Shubham Kumar Sinha, “Emergent supersymmetry at large N”, J. High Energ. Phys., 2024:1 (2024)
SangEun Han, Igor F. Herbut, “Spontaneous breaking of the
SO(2N)
symmetry in the Gross-Neveu model”, Phys. Rev. D, 109:9 (2024)
SangEun Han, Igor F. Herbut, “Gross-Neveu-Yukawa theory of
SO(2N)→SO(N)×SO(N)
spontaneous symmetry breaking”, Phys. Rev. B, 110:12 (2024)
I. F. Herbut, “Wilson-Fisher fixed points in the presence of Dirac fermions”, Mod. Phys. Lett. B, 2024
Rajeev S. Erramilli, Luca V. Iliesiu, Petr Kravchuk, Aike Liu, David Poland, David Simmons-Duffin, “The Gross-Neveu-Yukawa archipelago”, J. High Energ. Phys., 2023:2 (2023)
Igor F. Herbut, Subrata Mandal, “SO(8)
unification and the large-
N
theory of superconductor-insulator transition of two-dimensional Dirac fermions”, Phys. Rev. B, 108:16 (2023)
Shiroman Prakash, “Spectrum of a Gross-Neveu Yukawa model with flavor disorder in three dimensions”, Phys. Rev. D, 107:6 (2023)
Claudio Bonati, Alessio Franchi, Andrea Pelissetto, Ettore Vicari, “Chiral critical behavior of 3D lattice fermionic models with quartic interactions”, Phys. Rev. D, 107:3 (2023)
Noam Chai, Mikhail Goykhman, Ritam Sinha, “Conformal correlators in the critical
O(N)
vector model”, Phys. Rev. D, 105:8 (2022)
J. A. Gracey, “Five loop renormalization of the Wess-Zumino model”, Phys. Rev. D, 105:2 (2022)
Laura Classen, J H Pixley, Elio J König, “Interaction-induced velocity renormalization in magic-angle twisted multilayer graphene”, 2D Mater., 9:3 (2022), 031001
John A. Gracey, “Generalized Gross–Neveu Universality Class with Non-Abelian Symmetry”, SIGMA, 17 (2021), 064, 20 pp.
J. A. Gracey, “Critical exponent
η
at
O(1/N3)
in the chiral XY model using the large
N
conformal bootstrap”, Phys. Rev. D, 103:6 (2021)
Shouryya Ray, Bernhard Ihrig, Daniel Kruti, John A. Gracey, Michael M. Scherer, Lukas Janssen, “Fractionalized quantum criticality in spin-orbital liquids from field theory beyond the leading order”, Phys. Rev. B, 103:15 (2021)
M. A. Shpot, “Boundary conformal field theory at the extraordinary transition: The layer susceptibility to O(ε)”, J. High Energ. Phys., 2021:1 (2021)
Oleg Antipin, Jahmall Bersini, Francesco Sannino, Zhi-Wei Wang, Chen Zhang, “More on the cubic versus quartic interaction equivalence in the
O(N)
model”, Phys. Rev. D, 104:8 (2021)
Andreas Wipf, Lecture Notes in Physics, 992, Statistical Approach to Quantum Field Theory, 2021, 475