|
Труды Математического института имени В. А. Стеклова, 2002, том 236, страницы 447–461
(Mi tm314)
|
|
|
|
On the Asymptotic Behavior of Solutions
of a Semilinear Elliptic Boundary Problem in Unbounded Domains
Yu. V. Egorova, V. A. Kondrat'evb a Université Paul Sabatier
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Аннотация:
We consider solutions of an elliptic linear equation Lu=0 of second order
in an unbounded domain Q in Rn supposing that
Q⊂{x=(x′,xn):0<xn<∞,|x′|<γ(xn)}, where
1⩽γ(t)⩽At+B, and that u satisfies the nonlinear boundary
condition ∂u∂N+k(x)u+b(x)|u(x)|p−1u(x)=0 on
the part of the boundary of Q where xn>0. We show that any such
solution u growing moderately at infinity tends to 0 as |x|→∞.
Earlier we showed this theorem for the case γ(xn)=B, i.e. for a cylindrical domain Q=Ω×(0,∞), Ω⊂Rn−1, and for the case when A⩽A0 with a constant A0 sufficiently small. Here we admit any value of A0. Our theorem is true even for the domain which is an outer part of a cone, and for the
half-space xn>0. Besides, we consider here more general operators L
with lower order terms. Notice that the new proof is quite different from
those in our earlier works.
Поступило в феврале 2001 г.
Образец цитирования:
Yu. V. Egorov, V. A. Kondrat'ev, “On the Asymptotic Behavior of Solutions
of a Semilinear Elliptic Boundary Problem in Unbounded Domains”, Дифференциальные уравнения и динамические системы, Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко, Труды МИАН, 236, Наука, МАИК «Наука/Интерпериодика», М., 2002, 447–461; Proc. Steklov Inst. Math., 236 (2002), 434–448
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm314 https://www.mathnet.ru/rus/tm/v236/p447
|
Статистика просмотров: |
Страница аннотации: | 325 | PDF полного текста: | 123 | Список литературы: | 50 |
|