Аннотация:
Рассматривается задача оптимального управления через часть границы решениями уравнения эллиптического типа в ограниченной области с гладкой границей с малым коэффициентом при операторе Лапласа и интегральными ограничениями на управление. Получено полное асимптотическое разложение по степеням малого параметра решения задачи.
Ключевые слова:сингулярные задачи, оптимальное управление, краевые задачи для систем уравнений в частных производных, асимптотические разложения.
Образец цитирования:
А. Р. Данилин, “Асимптотика решения задачи оптимального граничного управления потоком через часть границы”, Тр. ИММ УрО РАН, 20, № 4, 2014, 116–127; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 55–66
\RBibitem{Dan14}
\by А.~Р.~Данилин
\paper Асимптотика решения задачи оптимального граничного управления потоком через часть границы
\serial Тр. ИММ УрО РАН
\yr 2014
\vol 20
\issue 4
\pages 116--127
\mathnet{http://mi.mathnet.ru/timm1120}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379275}
\elib{https://elibrary.ru/item.asp?id=22515139}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 292
\issue , suppl. 1
\pages 55--66
\crossref{https://doi.org/10.1134/S008154381602005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376272600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971537013}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timm1120
https://www.mathnet.ru/rus/timm/v20/i4/p116
Эта публикация цитируется в следующих 5 статьяx:
А. Р. Данилин, “Асимптотика решения задачи оптимального распределенного управления в выпуклой области с малым параметром при одной из старших производных”, Уфимск. матем. журн., 15:2 (2023), 42–54; A. R. Danilin, “Asymptotics for solutions of problem on optimally distributed control in convex domain with small parameter at one of higher derivatives”, Ufa Math. J., 15:2 (2023), 42–54
А. Р. Данилин, “Асимптотика решения задачи оптимального граничного управления в двухсвязной области с различной интенсивностью на участках границы”, Ж. вычисл. матем. и матем. физ., 62:2 (2022), 217–231; A. R. Danilin, “Asymptotic expansion for the solution of an optimal boundary control problem in a doubly connected domain with different control intensity on boundary segments”, Comput. Math. Math. Phys., 62:2 (2022), 218–231
Hu W., Shen J., Singler J.R., Zhang Ya., Zheng X., “a Superconvergent Hybridizable Discontinuous Galerkin Method For Dirichlet Boundary Control of Elliptic Pdes”, Numer. Math., 144:2 (2020), 375–411
A. R. Danilin, “Asymptotics of the Solution of a Singular Optimal Distributed Control Problem with Essential Constraints in a Convex Domain”, Diff Equat, 56:2 (2020), 251
А. Р. Данилин, “Асимптотика решения бисингулярной задачи оптимального граничного управления в ограниченной области”, Ж. вычисл. матем. и матем. физ., 58:11 (2018), 1804–1814; A. R. Danilin, “Asymptotics of the solution of a bisingular optimal boundary control problem in a bounded domain”, Comput. Math. Math. Phys., 58:11 (2018), 1737–1747