|
Труды Института математики, 2015, том 23, номер 2, страницы 123–136
(Mi timb250)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Big composition factors in restrictions of representations of the special linear group to subsystem subgroups with two simple components
I. D. Suprunenko Institute of Mathematics of the National Academy of Sciences of Belarus
Аннотация:
The article is devoted to constructing composition factors with certain special properties in the restrictions of modular irreducible representations of the special linear group to subsystem subgroups with two simple components. The goal is to find factors big in some sense for both components. For an irreducible representation φ of the group Al(K) with highest weight ∑li=1aiωi set s(φ)=∑li=1ai and if l>2, put t(φ)=∑l−1i=2ai. We show that the restriction of φ to a maximal subsystem subgroup with two simple components H1 and H2 has a composition factor of the form φ1⊗φ2 where φi is an irreducible representation of Hi, s(φ1)=s(φ), and s(φ2)=t(φ), and prove that for all such factors τ1⊗τ2 the sum s(τ1)+s(τ2)⩽s(φ)+t(φ) and s(τi)⩽s(φ). If the ground field characteristic is a prime p, the ranks of the components are >2, the representation φ is p-restricted and its highest weight is large with respect to p, we almost always can construct a factor where the highest weight of φ1 is large with respect to p and s(φi) are not very far from the maximal possible values. The existence of such factors yield effective tools for solving a number of questions, in particular, for finding or estimating various parameters of the images of individual elements in representations of such groups.
Поступила в редакцию: 01.10.2015
Образец цитирования:
I. D. Suprunenko, “Big composition factors in restrictions of representations of the special linear group to subsystem subgroups with two simple components”, Тр. Ин-та матем., 23:2 (2015), 123–136
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timb250 https://www.mathnet.ru/rus/timb/v23/i2/p123
|
Статистика просмотров: |
Страница аннотации: | 239 | PDF полного текста: | 85 | Список литературы: | 50 |
|