|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters
Alexander Kukusha, Andrii Malenkob, Hans Schneeweissc a Department of Mathematical Analysis, Kyiv National Taras
Shevchenko University, Kyiv, Ukraine
b Department of Probability Theory and Mathematical Statistics,
Kyiv National Taras Shevchenko University, Kyiv, Ukraine
c University of Muenchen, Germany
Аннотация:
We consider a regression of y on x given by a pair of mean and
variance functions with a parameter vector θ to be estimated that
also appears in the distribution of the regressor variable x. The estimation of θ is based on an extended quasi score (QS) function. Of
special interest is the case where the distribution of x depends only
on a subvector α of θ, which may be considered a nuisance parameter. A major application of this model is the classical measurement
error model, where the corrected score (CS) estimator is an alternative to the QS estimator. Under unknown nuisance parameters
we derive conditions under which the QS estimator is strictly more
efficient than the CS estimator. We focus on the loglinear Poisson,
the Gamma, and the logit model.
Ключевые слова:
Mean-variance model, measurement error model, quasi score
estimator, corrected score estimator, nuisance parameter, optimality property.
Образец цитирования:
Alexander Kukush, Andrii Malenko, Hans Schneeweiss, “Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters”, Theory Stoch. Process., 13(29):4 (2007), 69–81
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp236 https://www.mathnet.ru/rus/thsp/v13/i4/p69
|
Статистика просмотров: |
Страница аннотации: | 89 | PDF полного текста: | 45 | Список литературы: | 22 |
|