|
Reselling of european option if the
implied volatility varies as
Cox-Ingersoll-Ross process
Mykhailo Pupashenkoa, Alexander Kukushb a Department of Probability Theory and Mathematical Statistics,
National Taras Shevchenko University of Kyiv, Volodymyrska st.
64, 01033 Kyiv, Ukraine
b Department of Mathematical Analysis, National Taras Shevchenko
University of Kyiv, Volodymyrska st. 64, 01033 Kyiv, Ukraine.
Аннотация:
On Black and Scholes market Investor buys a European call option.
At each moment of time till the maturity he is allowed to resell the
option for the quoted market price. In Kukush et al. (2006) On
reselling of European option, Theory Stoch. Process., 12(28), 75-87,
a similar problem was investigated for another model of the market
price. We propose a more realistic model based on Cox-Ingersoll-Ross
process. Discrete approximation for this model is investigated, which
is arbitrage–free. For this discrete model, a formula for penultimate
optimal stopping domains is derived.
Ключевые слова:
Arbitrage, Cox-Ingersoll-Ross process, European option reselling, implied volatility, optimal stopping domain, option market price.
Образец цитирования:
Mykhailo Pupashenko, Alexander Kukush, “Reselling of european option if the
implied volatility varies as
Cox-Ingersoll-Ross process”, Theory Stoch. Process., 14(30):4 (2008), 114–128
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp218 https://www.mathnet.ru/rus/thsp/v14/i4/p114
|
Статистика просмотров: |
Страница аннотации: | 131 | PDF полного текста: | 58 | Список литературы: | 27 |
|