Loading [MathJax]/jax/output/SVG/config.js
Журнал Средневолжского математического общества
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Журнал СВМО:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Журнал Средневолжского математического общества, 2010, том 12, номер 1, страницы 7–23 (Mi svmo1)  

Математика

Критерий определения порядка галеркинского приближения решения начально-краевых задач

А. В. Анкилов, П. А. Вельмисов

Ульяновский государственный технический университет
Список литературы:
Аннотация: На основании анализа функционалов типа Ляпунова, построенных для дифференциального уравнения в частных производных, описывающего свободные колебания упругой пластины, доказана абсолютная и равномерная сходимость приближенных решений этого уравнения, полученных обобщенным методом Галеркина, к их точному решению. Получен критерий определения порядка приближенного решения для отыскания решения с заданной точностью. Разработанный критерий может быть использован при построении решений широкого класса других линейных дифференциальных уравнений в частных производных.
Ключевые слова: динамическая устойчивость; условная устойчивость; функционал; дифференциальное уравнение в частных производных.
Поступила в редакцию: 22.05.2010
УДК: 517.9
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/svmo1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Средневолжского математического общества
    Статистика просмотров:
    Страница аннотации:70
    Список литературы:16
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025