Аннотация:
Изучается интегральный оператор вида
Tg(f)(z)=z1∫0…zn∫0f(ζ1,…,ζn)g(ζ1,…,ζn)dζ1…ζn
на пространстве аналитических функций на единичном поликруге Un в Cn. Доказано, что этот оператор ограничен в пространстве со смешанной нормой
Ap,qα(Un)={f∈H(Un)∣∫[0,1)nMqp(f,r)n∏j=1(1−rj)αjdrj<∞},
где p,q∈[1,∞) и α=(α1,…,αn) таковы, что αj>−1 при любом j=1,…,n тогда и только тогда, когда supz∈Unn∏j=1(1−|zj|)|g(z)|<∞. Доказано также, что этот оператор компактен тогда и только тогда, когда limz→∂Unn∏j=1(1−|zj|)|g(z)|=0.
Ключевые слова:
аналитическая функция, пространство со смешанной нормой, интегральный оператор, поликруг, ограниченность, компактность.
Образец цитирования:
С. Стевич, “Ограниченность и компактность интегрального оператора на пространстве со смешанной нормой на поликруге”, Сиб. матем. журн., 48:3 (2007), 694–706; Siberian Math. J., 48:3 (2007), 559–569
\RBibitem{Ste07}
\by С.~Стевич
\paper Ограниченность и компактность интегрального оператора на пространстве со смешанной нормой на поликруге
\jour Сиб. матем. журн.
\yr 2007
\vol 48
\issue 3
\pages 694--706
\mathnet{http://mi.mathnet.ru/smj58}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2347917}
\zmath{https://zbmath.org/?q=an:1164.47331}
\transl
\jour Siberian Math. J.
\yr 2007
\vol 48
\issue 3
\pages 559--569
\crossref{https://doi.org/10.1007/s11202-007-0058-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247609000018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34347222542}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/smj58
https://www.mathnet.ru/rus/smj/v48/i3/p694
Эта публикация цитируется в следующих 76 статьяx:
Guo Zh., Liu L., Shu Y., “On Stevic-Sharma Operator From the Mixed-Norm Spaces to Zygmund-Type Spaces”, Math. Inequal. Appl., 24:2 (2021), 445–461
Gupta A., Sharma P., “Weighted Fractional Differentiation Composition Operators From Mixed-Norm Spaces to Zygmund Spaces”, Asian-Eur. J. Math., 10:4 (2017), 1750082
Li H. Guo Zh., “on a Product-Type Operator From Mixed-Norm Spaces To Bloch-Orlicz Spaces”, J. Comput. Anal. Appl., 21:5 (2016), 934–945
Ueki S.-i., “Higher Order Derivative Characterization For Fock-Type Spaces”, Integr. Equ. Oper. Theory, 84:1 (2016), 89–104
Chen C., Zhou Z.-H., “Differences of the Weighted Differentiation Composition Operators From Mixed-Norm Spaces to Weighted-Type Spaces”, Ukr. Math. J., 68:6 (2016), 959–971
Qi J., Meng F., Yuan W., “Growth of Meromorphic Function Sharing Functions and Some Uniqueness Problems”, J. Funct. space, 2016, 6250867
Liu Y., Yu Ya., Liu X., “Riemann-Stieltjes Operator From the General Space To Zygmund-Type Spaces on the Unit Ball”, Complex Anal. Oper. Theory, 9:5 (2015), 985–997
Qi J., Zhu T., “Further Results About Uniqueness of Meromorphic Functions Sharing a Set With Their Derivatives”, Math. Slovaca, 64:6 (2014), 1421–1436
Sehba B., Stevic S., “on Some Product-Type Operators From Hardy-Orlicz and Bergman-Orlicz Spaces To Weighted-Type Spaces”, Appl. Math. Comput., 233 (2014), 565–581
Zhou J., Liu Y., “Products of Radial Derivative and Multiplication Operator Between Mixed Norm Spaces and Zygmund-Type Spaces on the Unit Ball”, Math. Inequal. Appl., 17:1 (2014), 349–366
D. Borgohain, S. Naik, “Weighted Fractional Differentiation Composition Operators from Mixed-Norm Spaces to Weighted-Type Spaces”, International Journal of Analysis, 2014 (2014), 1
Yongmin Liu, Yanyan Yu, “RIEMANN-STIELTJES OPERATOR FROM MIXED NORM SPACES TO ZYGMUND-TYPE SPACES ON THE UNIT BALL”, Taiwanese J. Math., 17:5 (2013)
Yongmin Liu, Jie Zhou, “On an Operator ${M_{u}\mathcal{R}}$ from Mixed Norm Spaces to Zygmund-Type Spaces on the Unit Ball”, Complex Anal. Oper. Theory, 7:3 (2013), 593
Jie Zhou, Yongmin Liu, “PRODUCTS OF RADIAL DERIVATIVE AND MULTIPLICATION OPERATORS FROM F(p,q,s) TO WEIGHTED-TYPE SPACES ON THE UNIT BALL”, Taiwanese J. Math., 17:1 (2013)
Stevic S., Sharma A.K., Sharma S.D., “Generalized Integration Operators From the Space of Integral Transforms Into Bloch-Type Spaces”, J Comput Anal Appl, 14:6 (2012), 1139–1147
Stevic S., Sharma A.K., “Integral-Type Operators Between Weighted Bergman Spaces on the Unit Disk”, J Comput Anal Appl, 14:7 (2012), 1339–1344
Stevo Stević, “Boundedness and compactness of an integral-type operator from Bloch-type spaces with normal weights to F(p,q,s) space”, Applied Mathematics and Computation, 218:9 (2012), 5414
Stevic S., “On some integral-type operators between a general space and Bloch-type spaces”, Applied Mathematics and Computation, 218:6 (2011), 2600–2618
Stević S., “On operator $P_\varphi^g$ from the logarithmic Bloch-type space to the mixed-norm space on the unit ball”, Appl. Math. Comput., 215:12 (2010), 4248–4255
Li Songxiao, Stević S., “On an integral-type operator from omega-Bloch spaces to mu-Zygmund spaces”, Appl. Math. Comput., 215:12 (2010), 4385–4391