Аннотация:
Изучаются конечные неразрешимые обобщенные группы Фробениуса, т. е. группы G, содержащие собственную нетривиальную нормальную подгруппу F и такие, что каждый смежный класс Fx, являющийся элементом простого порядка p в фактор-группе G/F, состоит из p-элементов. Примерами таких групп служат группы Фробениуса, где в качестве F выступает ядро Фробениуса, а также группы Камины.
Ключевые слова:
группа Фробениуса, обобщенная группа Фробениуса, ядро, дополнение, группа Камины.
Работа выполнена при поддержке РФФИ в рамках научного проекта № 19–01–00507. Первый автор поддержан Национальным фондом естественных наук Китая (проект 11771409).
Статья поступила: 18.03.2019 Окончательный вариант: 13.06.2019 Принята к печати: 24.07.2019
Образец цитирования:
С. Вэй, А. Х. Журтов, Д. В. Лыткина, В. Д. Мазуров, “Конечные группы, близкие к группам Фробениуса”, Сиб. матем. журн., 60:5 (2019), 1035–1040; Siberian Math. J., 60:5 (2019), 805–809