Аннотация:
Представлена часть проекта по изложению основ алгебраической геометрии над произвольными алгебраическими системами [1–8]. Вводится понятие универсальной геометрической эквивалентности двух алгебраических систем $\mathscr A$ и $\mathscr B$ одного языка {\tt L}, которое является усилением уже известного понятия геометрической эквивалентности и выражает максимальную близость $\mathscr A$ и $\mathscr B$ с точки зрения их алгебраических геометрий. Раскрывается связь между универсальной геометрической эквивалентностью и универсальной эквивалентностью в смысле совпадения универсальных теорий.
Образец цитирования:
Э. Ю. Даниярова, А. Г. Мясников, В. Н. Ремесленников, “Универсальная геометрическая эквивалентность алгебраических систем одной сигнатуры”, Сиб. матем. журн., 58:5 (2017), 1035–1050; Siberian Math. J., 58:5 (2017), 801–812
Э. Ю. Даниярова, А. Г. Мясников, В. Н. Ремесленников, “Алгебраическая геометрия над алгебраическими системами. VIII. Геометрические эквивалентности и особые классы алгебраических систем”, Фундамент. и прикл. матем., 22:4 (2019), 75–100; E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures”, J. Math. Sci., 257:6 (2021), 797–813
Э. Ю. Даниярова, А. Г. Мясников, В. Н. Ремесленников, “Алгебраическая геометрия над алгебраическими системами. IX. Главные универсальные классы и Dis-пределы”, Алгебра и логика, 57:6 (2018), 639–661; E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits”, Algebra and Logic, 57:6 (2019), 414–428
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures X: Ordinal dimension”, Int. J. Algebr. Comput., 28:8, SI (2018), 1425–1448