Аннотация:
Цель статьи – дать читателю реальную возможность убедиться в том, что индекс изолированной омбилической точки аналитической поверхности не может быть больше единицы. Для поверхности, гомеоморфной сфере, это означает, в частности, что на ней непременно найдутся по крайней мере две омбилические точки, как и предполагал Каратеодори. Ил. 24, библиогр. 9.
Costa J.C.F., Martins L.F., Nuno-Ballesteros J.J., “on the Index of Principal Foliations of Surfaces in R-3 With Corank 1 Singularities”, J. Singul., 22 (2020), 1–16
Craizer M., Garcia R.A., “Quadratic Points of Surfaces in Projective 3-Space”, Q. J. Math., 70:3 (2019), 1105–1134
Ebenfelt P., Zaitsev D., “a New Invariant Equation For Umbilical Points on Real Hypersurfaces in C-2 and Applications”, Commun. Anal. Geom., 27:7 (2019), 1549–1582
Ebenfelt P., Son D.N., “Umbilical Points on Three Dimensional Strictly Pseudoconvex Cr Manifolds i: Manifolds With U(1)-Action”, Math. Ann., 368:1-2 (2017), 537–560
Ghomi M., Howard R., “Normal Curvatures of Asymptotically Constant Graphs and Caratheodory's Conjecture”, Proc. Amer. Math. Soc., 140:12 (2012), 4323–4335
Llibre J., Martinez-Alfaro J., “An Upper Bound of the Index of an Equilibrium Point in the Plane”, J. Differ. Equ., 253:8 (2012), 2460–2473
Barros M., Garay O.J., “Critical Curves for the Total Normal Curvature in Surfaces of 3-Dimensional Space Forms”, J. Math. Anal. Appl., 389:1 (2012), 275–292
Fontenele F., Xavier F., “A criterion for the nonexistence of closed leaves in unorientable planar foliations”, J Differential Equations, 250:10 (2011), 3803–3812
Izumiya Sh., Nuno Ballesteros J.J., Romero Fuster Maria del Carmen, “Global properties of codimension two spacelike submanifolds in Minkowski space”, Advances in Geometry, 10:1 (2010), 51–75
Xavier F., “An index formula for Loewner vector fields”, Mathematical Research Letters, 14:5–6 (2007), 865–873
Fukui T., Nuno-Ballesteros J.J., “Isolated roundings and flattenings of submanifolds in euclidean spaces”, Tohoku Mathematical Journal, 57:4 (2005), 469–503
Garcia R., Mello L.F., Sotomayor J., “Principal mean curvature foliations on surfaces immersed in R-4”, Equadiff 2003: International Conference on Differential Equations, 2005, 939–950
Smyth B., “The nature of elliptic sectors in the principal foliations of surface theory”, Equadiff 2003: International Conference on Differential Equations, 2005, 957–959
Garcia R, Sotomayor J, “A metric property of umbilic points”, Anais da Academia Brasileira de Ciencias, 75:4 (2003), 405–413