Аннотация:
Изучается известное преобразование Харди методом средних арифметических и сопряженное
к нему преобразование Беллмана рядов Фурье по мультипликативным системам. Дается интегральное
представление оператора Харди и доказывается, что пространства с мажорантой модуля непрерывности
в Lp[0,1)Lp[0,1), 1≤p≤∞, BMO(P,[0,1)), H(P,[0,1))
из определенного класса инвариантны относительно преобразований Харди и Беллмана. Для функций с обобщенно-монотонными коэффициентами Фурье получены критерии принадлежности различным пространствам в терминах коэффициентов Фурье и преобразований Харди и Беллмана этих функций.
Библиография: 30 названий.
Образец цитирования:
С. С. Волосивец, “О преобразованиях Харди и Беллмана рядов по мультипликативным системам”, Матем. сб., 199:8 (2008), 3–28; S. S. Volosivets, “Hardy and Bellman transformations of series with respect to multiplicative systems”, Sb. Math., 199:8 (2008), 1111–1137
\RBibitem{Vol08}
\by С.~С.~Волосивец
\paper О преобразованиях Харди и Беллмана рядов по мультипликативным системам
\jour Матем. сб.
\yr 2008
\vol 199
\issue 8
\pages 3--28
\mathnet{http://mi.mathnet.ru/sm3842}
\crossref{https://doi.org/10.4213/sm3842}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2452265}
\elib{https://elibrary.ru/item.asp?id=20359347}
\transl
\by S.~S.~Volosivets
\paper Hardy and Bellman transformations of series with respect to multiplicative systems
\jour Sb. Math.
\yr 2008
\vol 199
\issue 8
\pages 1111--1137
\crossref{https://doi.org/10.1070/SM2008v199n08ABEH003956}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900009}
\elib{https://elibrary.ru/item.asp?id=18096820}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049188933}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm3842
https://doi.org/10.4213/sm3842
https://www.mathnet.ru/rus/sm/v199/i8/p3
Эта публикация цитируется в следующих 2 статьяx:
Sándor Fridli, Ferenc Schipp, Atlantis Studies in Mathematics for Engineering and Science, 12, Dyadic Walsh Analysis from 1924 Onwards Walsh-Gibbs-Butzer Dyadic Differentiation in Science Volume 1 Foundations, 2015, 209
Volosivets S.S., “On Hardy and Bellman transforms of series with respect to multiplicative systems in symmetric spaces”, Anal. Math., 35:2 (2009), 131–148