Аннотация:
Рассматриваются стационарные решения задачи обтекания тела с конечным
интегралом Дирихле. Устанавливается, что вектор скорости $\mathbf u(\mathbf x)$ отличается от своего предельного значения $\mathbf u_\infty$ на величину $O(|\mathbf x|^{-1})$. Тем самым доказано, что любое решение задачи обтекания с конечным интегралом Дирихле обладает следом, вне которого вихрь экспоненциально мал.
Библиография: 16 названий.
Образец цитирования:
К. И. Бабенко, “О стационарных решениях задачи обтекания тела вязкой несжимаемой жидкостью”, Матем. сб., 91(133):1(5) (1973), 3–26; K. I. Babenko, “On stationary solutions of the problem of flow past a body of a viscous incompressible fluid”, Math. USSR-Sb., 20:1 (1973), 1–25
\RBibitem{Bab73}
\by К.~И.~Бабенко
\paper О~стационарных решениях задачи обтекания тела вязкой несжимаемой жидкостью
\jour Матем. сб.
\yr 1973
\vol 91(133)
\issue 1(5)
\pages 3--26
\mathnet{http://mi.mathnet.ru/sm3072}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=348301}
\zmath{https://zbmath.org/?q=an:0285.76009}
\transl
\by K.~I.~Babenko
\paper On~stationary solutions of the problem of flow past a~body of a~viscous incompressible fluid
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 1
\pages 1--25
\crossref{https://doi.org/10.1070/SM1973v020n01ABEH001823}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm3072
https://www.mathnet.ru/rus/sm/v133/i1/p3
Эта публикация цитируется в следующих 61 статьяx:
Thomas Eiter, Ana Leonor Silvestre, “Representation formulas and far-field behavior of time-periodic incompressible viscous flow around a translating rigid body”, Nonlinear Differ. Equ. Appl., 32:3 (2025)
Sabria Ben Ayed, Mohamed Meslameni, “The scalar Oseen problem in two-dimensional exterior domains”, Journal of Mathematical Analysis and Applications, 534:1 (2024), 128044
Tomoki Takahashi, “Anisotropically weighted Lq$L^q$‐Lr$L^r$ estimates of the Oseen semigroup in exterior domains, with applications to the Navier–Stokes flow past a rigid body”, Mathematische Nachrichten, 297:1 (2024), 302
Thomas Eiter, Mads Kyed, Yoshihiro Shibata, “Falling Drop in an Unbounded Liquid Reservoir: Steady-state Solutions”, J. Math. Fluid Mech., 25:2 (2023)
Lili Wang, Wendong Wang, “Asymptotic Properties of Steady Plane Solutions of the Navier–Stokes Equations in a Cone-Like Domain”, J. Math. Fluid Mech., 25:3 (2023)
Tomoki Takahashi, “Existence of a Stationary Navier–Stokes Flow Past a Rigid Body, with Application to Starting Problem in Higher Dimensions”, J. Math. Fluid Mech., 23:2 (2021)
Yasunori Maekawa, “ON STABILITY OF PHYSICALLY REASONABLE SOLUTIONS TO THE TWO-DIMENSIONAL NAVIER–STOKES EQUATIONS”, J. Inst. Math. Jussieu, 20:2 (2021), 517
Ana L. Silvestre, “On the Oseen Fundamental Solution and the Asymptotic Profile of Flows Past a Translating Object”, J. Math. Fluid Mech., 22:1 (2020)
A. I. Aptekarev, N. G. Afendikova, “About the Works of K. I. Babenko in the Field of Mechanics and Applied Mathematics (on the 100th Anniversary of His Birth)”, Mech. Solids, 55:7 (2020), 919
Giovanni P. Galdi, Jiří Neustupa, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 341
Mikhail Korobkov, Konstantin Pileckas, Remigio Russo, “The existence theorem for the steady Navier–Stokes problem in exterior axially symmetric 3D domains”, Math. Ann., 370:1-2 (2018), 727
Shangkun Weng, “Decay Properties of Axially Symmetric D-Solutions to the Steady Navier–Stokes Equations”, J. Math. Fluid Mech., 20:1 (2018), 7
Toshiaki Hishida, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 299
Mondher Benjemaa, Hela Louati, Mohamed Meslameni, “On the Stationary Navier–Stokes Problem in $\mathbb {R}^3$ R 3 : An Approach in Weighted Sobolev Spaces”, Mediterr. J. Math., 14:3 (2017)
Ana Leonor Silvestre, Takéo Takahashi, Toshiaki Hishida, “A boundary control problem for the steady self-propelled motion of a rigid body in a Navier–Stokes fluid”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34:6 (2017), 1507
Konstantin Pileckas, Remigio Russo, “Asymptotics of Solutions with Vanishing at Infinity Velocity of the Steady-State Navier–Stokes Equations in the Dimension Four”, J. Math. Fluid Mech., 19:4 (2017), 725
Paul Deuring, Giovanni P. Galdi, “Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body”, Arch Rational Mech Anal, 221:1 (2016), 183
Mikhail V. Korobkov, Konstantin Pileckas, Remigio Russo, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016, 1
Paul Deuring, “Pointwise Spatial Decay of Weak Solutions to the Navier–Stokes System in 3D Exterior Domains”, J. Math. Fluid Mech, 2015
Mikhail Korobkov, Konstantin Pileckas, Remigio Russo, “The Liouville Theorem for the Steady-State Navier–Stokes Problem for Axially Symmetric 3D Solutions in Absence of Swirl”, J. Math. Fluid Mech, 2015