Аннотация:
Изучается колмогоровская ε-энтропия равномерного
аттрактора A семейства неавтономных уравнений
реакции-диффузии с внешней силой g(x,t). Предполагается,
что g(x,t) принадлежат трансляционно-инвариантному
относительно группы сдвигов по t множеству
Σ, Σ⊂C(R;H), H=(L2(Ω))N.
Кроме того, Σ компактно в C(R;H).
В работе дается оценка ε-энтропии равномерного
аттрактора A через ε1=ε1(ε)-энтропию
компактного в C([0,l];H) множества Σl внешних сил g(x,t)∈Σ,
суженных на интервал [0,l], l=l(ε) (ε1(ε)∼με, l(ε)∼τlog2(1/ε)). Эта общая оценка иллюстрируется рядом примеров, взятых из различных областей математической физики и теории информации.
Библиография: 23 названия.
Образец цитирования:
М. И. Вишик, В. В. Чепыжов, “Колмогоровская ε-энтропия аттракторов систем реакции-диффузии”, Матем. сб., 189:2 (1998), 81–110; M. I. Vishik, V. V. Chepyzhov, “Kolmogorov ε-entropy estimates for the uniform attractors of non-autonomous reaction-diffusion systems”, Sb. Math., 189:2 (1998), 235–263
Andrew Comech, Alexander Komech, Mikhail Vishik, Trends in Mathematics, Partial Differential Equations and Functional Analysis, 2023, 259
Maaroufi N., “Invariance and Computation of the Extended Fractal Dimension For the Attractor of Cgl on R”, Chaos Solitons Fractals, 82 (2016), 87–96
Yue G.Ch., Zhong Ch.K., “Long-Term Analysis of Degenerate Parabolic Equations in R-N”, Acta. Math. Sin.-English Ser., 31:3 (2015), 383–410
N. Maaroufi, “Topological entropy by unit length for the Ginzburg-Landau equation on the line”, DCDS-A, 34:2 (2013), 647
O. Goubet, N. Maaroufi, “Entropy by unit length for the Ginzburg-Landau equation on the line. A Hilbert space framework”, CPAA, 11:3 (2011), 1253
Yin, FQ, “Attractor for lattice system of dissipative Zakharov equation”, Acta Mathematica Sinica-English Series, 25:2 (2009), 321
Guo, BL, “Attractor and spatial chaos for the Brusselator in R-N”, Nonlinear Analysis-Theory Methods & Applications, 70:11 (2009), 3917
Shirikyan, A, “Euler equations are not exactly controllable by a finite-dimensional external force”, Physica D-Nonlinear Phenomena, 237:10–12 (2008), 1317
Vladimir Chepyzhov, Mark Vishik, International Mathematical Series, 6, Instability in Models Connected with Fluid Flows I, 2008, 135
A. Miranville, S. Zelik, Handbook of Differential Equations: Evolutionary Equations, 4, 2008, 103
Mielke A., Zelik S.V., “Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction-diffusion systems in Rn”, J. Dynam. Differential Equations, 19:2 (2007), 333–389
Yin, FQ, “Global attractor for Klein-Gordon-Schrodinger lattice system”, Applied Mathematics and Mechanics-English Edition, 28:5 (2007), 695
Zelik, SV, “Spatial and dynamical chaos generated by reaction-diffusion systems in unbounded domains”, Journal of Dynamics and Differential Equations, 19:1 (2007), 1
Boling Guo, Yongqian Han, “Attractors of derivative complex Ginzburg-Landau equation in unbounded domains”, Front. Math. China, 2:3 (2007), 383
Efendiev, M, “Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems”, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 135 (2005), 703
Zhou, SF, “Kolmogorov's epsilon-entropy of attractors for lattice systems”, International Journal of Bifurcation and Chaos, 15:7 (2005), 2295
Chueshov I., Lasiecka I., “Kolmogorov's epsilon-entropy for a class of invariant sets and dimension of global attractors for second-order evolution equations with nonlinear damping”, Control Theory of Partial Differential Equations, Pure and Applied Mathematics : A Program of Monographs, Textbooks, and Lecture Notes, 242, 2005, 51–69
Lord, GJ, “Numerical computation of epsilon-entropy for parabolic equations with analytic solutions”, Physica D-Nonlinear Phenomena, 194:1–2 (2004), 65
Efendiev, M, “Global and exponential attractors for nonlinear react ion-diffusion systems in unbounded domains”, Proceedings of the Royal Society of Edinburgh Section A-Mathematics, 134 (2004), 271
Efendiev, M, “Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation”, Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 460:2044 (2004), 1107