Аннотация:
The linearization problem of a second-order ordinary differential equation by the generalized Sundman transformation was considered earlier by Duarte, Moreira and Santos using the Laguerre form. The results obtained in the present paper demonstrate that their solution of the linearization problem for a second-order ordinary differential equation via the generalized Sundman transformation is not complete. We also give examples which show that the Laguerre form is not sufficient for the linearization problem via the generalized Sundman transformation.
Maria V. Demina, Varvara G. Nechitailo, “Integrability Properties of Generalized Liénard Differential Equations”, Qual. Theory Dyn. Syst., 24:1 (2025)
J F Cariñena, Eduardo Martínez, Miguel C Muñoz-Lecanda, “Sundman transformation and alternative tangent structures”, J. Phys. A: Math. Theor., 56:18 (2023), 185202
J. M. Orverem, Y. Haruna, “THE GENERALIZED SUNDMAN TRANSFORMATION AND DIFFERENTIAL FORMS FOR LINEARIZING THE VARIABLE FREQUENCY OSCILLATOR EQUATION AND THE MODIFIED IVEY'S EQUATION”, FJS, 7:3 (2023), 167
Sinelshchikov D.I., “Nonlocal Deformations of Autonomous Invariant Curves For Lienard Equations With Quadratic Damping”, Chaos Solitons Fractals, 152 (2021), 111412
Sinelshchikov D., “On An Integrability Criterion For a Family of Cubic Oscillators”, AIMS Math., 6:11 (2021), 12902–12910
Demina V M. Sinelshchikov I D., “Darboux First Integrals and Linearizability of Quadratic-Quintic Duffing-Van der Pol Oscillators”, J. Geom. Phys., 165 (2021), 104215
Sinelshchikov D.I., “On Linearizability Via Nonlocal Transformations and First Integrals For Second-Order Ordinary Differential Equations”, Chaos Solitons Fractals, 141 (2020), 110318
Sinkala W., “Some Remarks on the Solution of Linearisable Second-Order Ordinary Differential Equations Via Point Transformations”, J. Math., 2020 (2020), 2406961
Sinelshchikov D.I., Gaiur I.Yu., Kudryashov N.A., “Lax Representation and Quadratic First Integrals For a Family of Non-Autonomous Second-Order Differential Equations”, J. Math. Anal. Appl., 480:1 (2019), UNSP 123375
Demina V M., Sinelshchikov D., “Integrability Properties of Cubic Lienard Oscillators With Linear Damping”, Symmetry-Basel, 11:11 (2019), 1378
Sinelshchikov I D., “On First Integrals For Some Non-Autonomous Lienard-Type Equations”, AIP Conference Proceedings, 2116, eds. Simos T., Tsitouras C., Amer Inst Physics, 2019, 270009
Suksern S. Naboonmee K., “Linearization of Fifth-Order Ordinary Differential Equations By Generalized Sundman Transformations”, Int. J. Differ. Equat., 2018, 3048428
Д. И. Синельщиков, Н. А. Кудряшов, “Об интегрируемых неавтономных уравнениях типа Льенара”, ТМФ, 196:2 (2018), 328–340; D. I. Sinelshchikov, N. A. Kudryashov, “On integrable non–autonomous Liénard–type equations”, Theoret. and Math. Phys., 196:2 (2018), 1230–1240
Ruiz A., Muriel C., “On the Integrability of Lienard i-Type Equations Via Lambda-Symmetries and Solvable Structures”, Appl. Math. Comput., 339 (2018), 888–898
N. A. Kudryashov, D. I. Sinelshchikov, “On the Integrability Conditions for a Family of Liénard-type Equations”, Regul. Chaotic Dyn., 21:5 (2016), 548–555
Н. А. Кудряшов, Д. И. Синельщиков, “Аналитические решения нелинейного уравнения конвекции–диффузии с нелинейными источниками”, Модел. и анализ информ. систем, 23:3 (2016), 309–316; N. A. Kudryashov, D. I. Sinelshchikov, “Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources”, Automatic Control and Computer Sciences, 51:7 (2017), 621–626
Kudryashov N.A., Sinelshchikov D.I., “On the Criteria For Integrability of the Lienard Equation”, Appl. Math. Lett., 57 (2016), 114–120
Nikolay A. Kudryashov, Dmitry I. Sinelshchikov, “On the Connection of the Quadratic Lienard Equation with an Equation for the Elliptic Functions”, Regul. Chaotic Dyn., 20:4 (2015), 486–496
Kudryashov N.A., Sinelshchikov D.I., “Analytical Solutions of the Rayleigh Equation For Empty and Gas-Filled Bubble”, J. Phys. A-Math. Theor., 47:40 (2014), 405202