Аннотация:
The free energy of a closed 3-manifold is a 2-parameter formal power series which encodes the perturbative Chern–Simons invariant (also known as the LMO invariant) of a closed 3-manifold with gauge group U(N)
for arbitrary N. We prove that the free energy of an arbitrary closed 3-manifold is uniformly Gevrey-1. As a corollary, it follows that the genus g part of the free energy is convergent in a neighborhood of zero, independent of the genus. Our results follow from an estimate of the LMO invariant, in a particular gauge, and from recent results of Bender–Gao–Richmond on the asymptotics of the number of rooted maps for arbitrary genus. We illustrate our results with an explicit formula for the free energy of a Lens space. In addition, using the Painlevé differential equation, we obtain an asymptotic expansion for the number of cubic graphs to all orders, stengthening the results of Bender–Gao–Richmond.
Образец цитирования:
Stavros Garoufalidis, Thang T. Q. Lê, Marcos Mariño, “Analyticity of the Free Energy of a Closed 3-Manifold”, SIGMA, 4 (2008), 080, 20 pp.
\RBibitem{GarLe Mar08}
\by Stavros Garoufalidis, Thang T.~Q.~L\^e, Marcos Mari\~no
\paper Analyticity of the Free Energy of a~Closed 3-Manifold
\jour SIGMA
\yr 2008
\vol 4
\papernumber 080
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma333}
\crossref{https://doi.org/10.3842/SIGMA.2008.080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470516}
\zmath{https://zbmath.org/?q=an:05555832}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800080}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236041}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma333
https://www.mathnet.ru/rus/sigma/v4/p80
Эта публикация цитируется в следующих 16 статьяx:
Pavel Bleher, Roozbeh Gharakhloo, Kenneth T‐R McLaughlin, “Phase diagram and topological expansion in the complex quartic random matrix model”, Comm Pure Appl Math, 77:2 (2024), 1405
Wu D.H., “Resurgent Analysis of Su(2) Chern-Simons Partition Function on Brieskorn Spheres SIGMA(2, 3, 6N+5)”, J. High Energy Phys., 2021, no. 2, 8
Garoufalidis S., Gu J., Marino M., “The Resurgent Structure of Quantum Knot Invariants”, Commun. Math. Phys., 386:1 (2021), 469–493
Aniceto I., Basar G., Schiappa R., “A Primer on Resurgent Transseries and Their Asymptotics”, Phys. Rep.-Rev. Sec. Phys. Lett., 809 (2019), 1–135
Borot G., Eynard B., Weisse A., “Root systems, spectral curves, and analysis of a Chern–Simons matrix model for Seifert fibered spaces”, Sel. Math.-New Ser., 23:2 (2017), 915–1025
Couso-Santamaria R., Schiappa R., Vaz R., “On Asymptotics and Resurgent Structures of Enumerative Gromov-Witten Invariants”, Commun. Number Theory Phys., 11:4 (2017), 707–790
Borot G., Eynard B., Orantin N., “Abstract Loop Equations, Topological Recursion and New Applications”, Commun. Number Theory Phys., 9:1 (2015), 51–187
Aniceto I., Russo J.G., Schiappa R., “Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories”, J. High Energy Phys., 2015, no. 3, 172
Marino M., “Lectures on Non-Perturbative Effects in Large N Gauge Theories, Matrix Models and Strings”, Fortschritte Phys.-Prog. Phys., 62:5-6 (2014), 455–540
Garoufalidis S., Its A., Kapaev A., Marino M., “Asymptotics of the Instantons of Painlevé I”, Int Math Res Not, 2012, no. 3, 561–606
Aniceto I., Schiappa R., Vonk M., “The Resurgence of Instantons in String Theory”, Commun. Number Theory Phys., 6:2 (2012), 339–496
Takata T., “On the SO(N) and Sp(N) free energy of a rational homology three-sphere”, Internat. J. Math., 22:4 (2011), 465–482
Bender E.A., Gao Zh., “Asymptotic enumeration of labelled graphs by genus”, Electron. J. Combin., 18:1 (2011), P13
Gao Zhicheng, “A formula for the bivariate map asymptotics constants in terms of the univariate map asymptotics constants”, Electron. J. Combin., 17:1 (2010), R155, 14 pp.
Garoufalidis S., Mariño M., “Universality and asymptotics of graph counting problems in non-orientable surfaces”, J. Combin. Theory Ser. A, 117:6 (2010), 715–740