Аннотация:
We provide lower bounds on the number of periodic Finsler billiard trajectories inside a quadratically convex smooth closed hypersurface $M$ in a $d$-dimensional Finsler space with possibly irreversible Finsler metric. An example of such a system is a billiard in a sufficiently weak magnetic field. The $r$-periodic Finsler billiard trajectories correspond to $r$-gons inscribed in $M$ and having extremal Finsler length. The cyclic group $\mathbb{Z}_r$ acts on these extremal polygons, and one counts the $\mathbb{Z}_r$-orbits. Using Morse and Lusternik–Schnirelmann theories, we prove that if $r\ge 3$ is prime, then the number of $r$-periodic Finsler billiard trajectories is not less than $(r-1)(d-2)+1$. We also give stronger lower bounds when $M$ is in general position. The problem of estimating the number of periodic billiard trajectories from below goes back to Birkhoff. Our work extends to the Finsler setting the results previously obtained for Euclidean billiards by Babenko, Farber, Tabachnikov, and Karasev.
Ключевые слова:
mathematical billiards, Finsler manifolds, magnetic billiards, Morse and Lusternik–Schnirelmann theories, unlabeled cyclic configuration spaces.
Pavle V. M. Blagojević, Serge Tabachnikov, and Günter M. Ziegler were supported by the DFG via the Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”. Pavle V. M. Blagojević was supported by the grant ON
174024 of Serbian Ministry of Education and Science. Michael Harrison and Serge Tabachnikov were supported by the NSF grant DMS-1510055.
Поступила:11 сентября 2019 г.; в окончательном варианте 25 марта 2020 г.; опубликована 3 апреля 2020 г.
Образец цитирования:
Pavle V. M. Blagojević, Michael Harrison, S. Tabachnikov, Günter M. Ziegler, “Counting Periodic Trajectories of Finsler Billiards”, SIGMA, 16 (2020), 022, 33 pp.