Аннотация:
We study Lamé operators of the form
L=−d2dx2+m(m+1)ω2℘(ωx+z0),
with m∈N and ω a half-period of ℘(z). For rectangular period lattices, we can choose ω and z0 such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lamé operator has a band structure with not more than m gaps. In the first part of the paper, we prove that the opened gaps are precisely the first m ones. In the second part, we study the Lamé spectrum for a generic period lattice when the potential is complex-valued. We concentrate on the m=1 case, when the spectrum consists of two regular analytic arcs, one of which extends to infinity, and briefly discuss the m=2 case, paying particular attention to the rhombic lattices.
Образец цитирования:
William A. Haese-Hill, Martin A. Hallnäs, Alexander P. Veselov, “On the Spectra of Real and Complex Lamé Operators”, SIGMA, 13 (2017), 049, 23 pp.
\RBibitem{HaeHalVes17}
\by William~A.~Haese-Hill, Martin~A.~Halln\"as, Alexander~P.~Veselov
\paper On the Spectra of Real and Complex Lam\'e Operators
\jour SIGMA
\yr 2017
\vol 13
\papernumber 049
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma1249}
\crossref{https://doi.org/10.3842/SIGMA.2017.049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405003700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021994999}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1249
https://www.mathnet.ru/rus/sigma/v13/p49
Эта публикация цитируется в следующих 5 статьяx:
Искандер А. Тайманов, “Конечнозонные $\mathcal{PT}$-потенциалы”, Функц. анализ и его прил., 58:4 (2024), 122–137; Iskander A. Taimanov, “Finite-zone $\mathcal{PT}$-potentials”, Funct. Anal. Appl., 58:4 (2024), 438–450
Д. Б. Давлетов, О. Б. Давлетов, Р. Р. Давлетова, А. А. Ершов, “О собственных элементах двумерной краевой задачи типа Стеклова для оператора Ламэ”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 33:1 (2023), 54–65
Kim K.Y., Levi M., Zhou J., “Spectral Asymptotics and Lame Spectrum For Coupled Particles in Periodic Potentials”, J. Dyn. Differ. Equ., 2021
Zh. Chen, E. Fu, Ch.-Sh. Lin, “Spectrum of the Lamé operator and application, I: Deformation along $\mathrm{Re}\,\tau=\frac12$”, Adv. Math., 383 (2021), 107699
Chen Zh., Lin Ch.-Sh., “Spectrum of the Lame Operator and Application, II: When An Endpoint Is a Cusp”, Commun. Math. Phys., 378:1 (2020), 335–368