Аннотация:
The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the
lattices of Ruijsenaars–Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems.
\RBibitem{AdlSha06}
\by Vsevolod E.~Adler, Alexey B.~Shabat
\paper On the One Class of Hyperbolic Systems
\jour SIGMA
\yr 2006
\vol 2
\papernumber 093
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma121}
\crossref{https://doi.org/10.3842/SIGMA.2006.093}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2280321}
\zmath{https://zbmath.org/?q=an:1138.35360}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100092}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234679}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma121
https://www.mathnet.ru/rus/sigma/v2/p93
Эта публикация цитируется в следующих 3 статьяx:
В. Э. Адлер, “Интегрируемые семиточечные дискретные уравнения и эволюционные цепочки второго порядка”, ТМФ, 195:1 (2018), 27–43; V. E. Adler, “Integrable seven-point discrete equations and second-order evolution chains”, Theoret. and Math. Phys., 195:1 (2018), 513–528
Vekslerchik V.E., “Functional Representation of the Negative Dnls Hierarchy”, J. Nonlinear Math. Phys., 20:4 (2013), 495–513
Pritula G.M., Vekslerchik V.E., “Toda-Heisenberg CHAIN: INTERACTING sigma-FIELDS IN TWO DIMENSIONS”, J Nonlinear Math Phys, 18:3 (2011), 443–459